ELPH_DECOMPOSE = [string]
Default: ELPH_DECOMPOSE = VDPR
Description: Chooses which contributions to include in the computation of the electron-phonon matrix elements.
Mind: Available as of VASP 6.5.0
|
The electron-phonon matrix element can be formulated in the projector-augmented-wave (PAW) method in terms of individual contributions[1].
Each contribution can be included by specifying the associated letter in ELPH_DECOMPOSE.
We suggest two different combinations to define matrix elements:
ELPH_DECOMPOSE = VDPR
- "All-electron" matrix element[1][2]
ELPH_DECOMPOSE = VDQ
- "Pseudo" matrix element[1][3]
Available contributions
- V - Derivative of pseudopotential,


- D - Derivative of PAW strength parameters,


- P - Derivative of PAW projectors,


- R - Derivative of PAW partial waves,
and 

- with

- Q - Derivative of PAW projectors,
(different eigenvalues)

Related tags and articles
References
- ↑ a b c M. Engel, H. Miranda, L. Chaput, A. Togo, C. Verdi, M. Marsman, and G. Kresse, Zero-point renormalization of the band gap of semiconductors and insulators using the projector augmented wave method, Phys. Rev. B 106, 094316 (2022).
- ↑ L. Chaput, A. Togo, and I. Tanaka, Finite-displacement computation of the electron-phonon interaction within the projector augmented-wave method, Phys. Rev. B 100, 174304 (2019).
- ↑ M. Engel, M. Marsman, C. Franchini, and G. Kresse, Electron-phonon interactions using the projector augmented-wave method and Wannier functions, Phys. Rev. B 101, 184302 (2020).