Including the Spin-Orbit Coupling
Description: Spin-Orbit Coupling (SOC) included self-consistently
The Magnetocrystalline Anisotropy Energy is determined by rotating all spins according to different directions. To modify the orientation of the spins in the crystal, we consider the second approach describes here. For the MAGMOM-tag, the total local magnetic moment is written according to the z direction (necessarily, the x and y-directions are equal to 0). The spin orientation [uvw] is defined by the SAXIS-tag in the Cartesian frame. The Magnetocrystalline Anisotropy Energy is calculated by orientating the spins in different directions and the following equation : EMAE = E[uvw] - Emin, with Emin the energy of the most stable spin orientation.
More details are available in the SAXIS and LSORBIT pages.
Exercise : Determine the total magnetic moment by adding the orbital moment of the Ni atoms. Calculate the Magnetocrystalline Anisotropy Energy of NiO by orientating the spins along the following path : (2,2,2) --> (2,2,1) --> (2,2,0) --> ... --> (2,2,-6). Identify the most stable spin orientation according to this path.
- INCAR
NiO GGA+U SOC SYSTEM = "NiO" Electronic minimization ENCUT = 450 EDIFF = 1E-5 LORBIT = 11 LREAL = .False. ISTART = 0 ISYM = -1 NELMIN = 6 LSORBIT = .True. LWAVE = .False. LCHARG = .False. DOS ISMEAR = -5 Magnetism ISPIN = 2 MAGMOM = 0 0 2 0 0 -2 6*0 SAXIS = 2 2 2 Orbital Moment LORBMOM = T Mixer AMIX = 0.2 BMIX = 0.00001 AMIX_MAG = 0.8 BMIX_MAG = 0.00001 GGA+U LDAU = .TRUE. LDAUTYPE = 2 LDAUL = 2 -1 LDAUU = 5.00 0.00 LDAUJ = 0.00 0.00 LDAUPRINT = 2 LMAXMIX = 4
- KPOINTS
k-points 0 gamma 4 4 4 0 0 0
- POSCAR
NiO 4.17 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 2 2 Cartesian 0.0 0.0 0.0 1.0 1.0 1.0 0.5 0.5 0.5 1.5 1.5 1.5
To the list of examples or to the main page