MDALGO

From VASP Wiki
Revision as of 17:03, 10 April 2014 by Vaspmaster (talk | contribs)

MDALGO = 0 | 1 | 2 | 3 | 11 | 21 | 13
Default: MDALGO = 0 

Description: MDALGO specifies the molecular dynamics simulation protocol (in case IBRION=0 and VASP was compiled with -Dtbdyn).


Standard molecular dynamics (IBRION=0), the same behavior as if VASP were compiled without -Dtbdyn.
NVT-simulation with Andersen thermostat. In the approach proposed by Andersen[1] the system is thermally coupled to a fictitious heat bath with the desired temperature. The coupling is represented by stochastic impulsive forces that act occasionally on randomly selected particles. The collision probability is defined as an average number of collisions per atom and time-step. This quantity can be controlled by the flag ANDERSEN_PROB. The total number of collisions with the heat-bath is written in the file REPORT for each MD step.
Nose-Hoover thermostat (SMASS needs to be specified in the INCAR file).
NVT- or NpT-simulation with Langevin thermostat.[2]
The Langevin thermostat maintains the temperature through a modification of Newton's equations of motion
where Fi is the force acting on atom i due to the interaction potential, γi is a friction coefficient, and fi is a random force with dispersion σi related to γi through:
with Δt being the time-step used in the MD to integrate the equations of motion. Obviously, Langevin dynamics is identical to the classical Hamiltonian in the limit of vanishing γ.
  • To run an NVT-simulation with Langevin thermostat, one has to:
  1. Set the standard MD-related tags: IBRION=0, TEBEG, POTIM, and NSW
  2. Set ISIF=2
  3. Set MDALGO=3 to invoke the Langevin thermostat
  4. Specify friction coefficients for all species in the POSCAR file, by means of the LANGEVIN_GAMMA-tag.
  • To run an NpT-simulation (Parinello-Rahman dynamics) with a Langevin thermostat, one has to:
  1. Set the standard MD-related tags: IBRION=0, TEBEG, POTIM, and NSW
  2. Set ISIF=3 to allow for relaxation of the cell volume and shape. At the moment, dynamics with fixed volume+variable shape (ISIF=4) or fixed shape+variable volume (ISIF=7) are not available.
  3. Set MDALGO=3 to invoke the Langevin thermostat
  4. Specify friction coefficients for all species in the POSCAR file, by means of the LANGEVIN_GAMMA-tag.
  5. Specify a separate set of friction coefficient for the lattice degrees-of-freedom, using the LANGEVIN_GAMMA_L-tag.
  6. Set a mass for the lattice degrees-of-freedom, using the PMASS-tag.
  7. Optionally, one may define an external pressure (in kB), by means of the PSTRESS-tag.
The temperatures listed in the OSZICAR are computed using the kinetic energy including contribution from both atomic and lattice degrees of freedom. The external pressure for a simulation can be computed as one third of the trace of the stress-tensor corrected for kinetic contributions, listed in the OUTCAR file. This can be achieved, e.g. using the following command:
grep "Total+kin" OUTCAR| awk 'BEGIN {p=0.} {p+=($2+$3+$4)/3.} END {print "pressure (kB):",p}'
Important: In Parinello-Rahman[3][4] dynamicsCite error: Closing </ref> missing for <ref> tag

[2] [3] [4] </references>


Contents

  1. Cite error: Invalid <ref> tag; no text was provided for refs named Andersen80
  2. a b M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Oxford university press: New York, 1991.
  3. a b M. Parinello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980).
  4. a b M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).