Slow-growth approach: Difference between revisions

From VASP Wiki
No edit summary
 
Line 29: Line 29:
can be found in reference <ref name="oberhofer2005"/>.
can be found in reference <ref name="oberhofer2005"/>.


== Anderson thermostat ==
* For a slow-growth simulation, one has to perform a calcualtion very similar to {{TAG|Constrained molecular dynamics}} but additionally the transformation velocity-related {{TAG|INCREM}}-tag for each geometric parameter with <tt>STATUS=0</tt> has to be specified. For a slow-growth approach run with Andersen thermostat, one has to:
#Set the standard MD-related tags: {{TAG|IBRION}}=0, {{TAG|TEBEG}}, {{TAG|POTIM}}, and {{TAG|NSW}}
#Set {{TAG|MDALGO}}=1, and choose an appropriate setting for {{TAG|ANDERSEN_PROB}}
#Define geometric constraints in the {{FILE|ICONST}} file, and set the '''STATUS''' parameter for the constrained coordinates to 0
#When the free-energy gradient is to be computed, set {{TAG|LBLUEOUT}}=.TRUE.
<ol start="5">
<li>Specify the transformation velocity-related {{TAG|INCREM}}-tag for each geometric parameter with <tt>STATUS=0</tt>.</li>
</ol>
== Nose-Hoover thermostat ==
* For a slow-growth approach run with Nose-Hoover thermostat, one has to:
#Set the standard MD-related tags: {{TAG|IBRION}}=0, {{TAG|TEBEG}}, {{TAG|POTIM}}, and {{TAG|NSW}}
#Set {{TAG|MDALGO}}=2, and choose an appropriate setting for {{TAG|SMASS}}
#Define geometric constraints in the {{FILE|ICONST}}-file, and set the <tt>STATUS</tt> parameter for the constrained coordinates to 0
#When the free-energy gradient is to be computed, set {{TAG|LBLUEOUT}}=.TRUE.
<ol start="5">
<li>Specify the transformation velocity-related {{TAG|INCREM}}-tag for each geometric parameter with <tt>STATUS=0</tt></li>
</ol>
VASP can handle multiple (even redundant) constraints. Note, however, that a too large number of constraints can cause problems with the stability of the [[#SHAKE|SHAKE algorithm]]. In problematic cases, it is recommended to use a looser convergence criterion (see {{TAG|SHAKETOL}}) and to allow a larger number of iterations (see {{TAG|SHAKEMAXITER}}) in the [[#SHAKE|SHAKE algorithm]]. Hard constraints may also be used in [[#Metadynamics|metadynamics simulations]] (see {{TAG|MDALGO}}=11 {{!}} 21). Information about the constraints is written onto the {{FILE|REPORT}}-file: check the lines following the string: <tt>Const_coord</tt>


== References ==
== References ==
Line 62: Line 38:
----
----


[[Category:Molecular dynamics]][[Category:Slow-growth approach]][[Category:Theory]][[Category:Howto]]
[[Category:Advanced molecular-dynamics sampling]][[Category:Theory]]

Latest revision as of 13:54, 16 October 2024

The free-energy profile along a geometric parameter can be scanned by an approximate slow-growth approach[1]. In this method, the value of is linearly changed from the value characteristic for the initial state (1) to that for the final state (2) with a velocity of transformation . The resulting work needed to perform a transformation can be computed as:

In the limit of infinitesimally small , the work corresponds to the free-energy difference between the the final and initial state. In the general case, is the irreversible work related to the free energy via Jarzynski's identity[2]:

Note that calculation of the free-energy via this equation requires averaging of the term over many realizations of the transformation. Detailed description of the simulation protocol that employs Jarzynski's identity can be found in reference [3].


References