ICHARG: Difference between revisions
mNo edit summary |
|||
Line 18: | Line 18: | ||
:Read potential from file {{FILE|POT}}. The local potential on the file {{FILE|POT}} is written by the optimized-effective-potential methods (OEP), if the flag {{TAG|LVTOT}}=.TRUE. is supplied in the {{FILE|INCAR}} file. Supported as of VASP.5.1. | :Read potential from file {{FILE|POT}}. The local potential on the file {{FILE|POT}} is written by the optimized-effective-potential methods (OEP), if the flag {{TAG|LVTOT}}=.TRUE. is supplied in the {{FILE|INCAR}} file. Supported as of VASP.5.1. | ||
*{{TAG|ICHARG}} | *{{TAG|ICHARG}}=10 | ||
:non-selfconsistent calculations: Adding 10 to the value of {{TAG|ICHARG}}, e.g., {{TAG|ICHARG}}=11 or 12 (or the less convenient value 10) means that the charge density will be kept constant during the ''entire electronic minimization''. | :non-selfconsistent calculations: Adding 10 to the value of {{TAG|ICHARG}}, e.g., {{TAG|ICHARG}}=11 or 12 (or the less convenient value 10) means that the charge density will be kept constant during the ''entire electronic minimization''. | ||
Revision as of 09:56, 25 July 2024
ICHARG = 0 | 1 | 2 | 4
Default: ICHARG | = 2 | if ISTART=0 |
= 0 | else |
Description: ICHARG determines how VASP constructs the initial charge density.
- ICHARG=0
- Calculate the charge density from initial wave functions.
- If ISTART is internally reset due to an invalid WAVECAR file, ICHARG will be set to ICHARG=2.
- ICHARG=1
- Read the charge density from CHGCAR file, and extrapolate from the old positions (on CHGCAR) to the new positions using a linear combination of atomic charge densities.
- In the PAW method, there is, however, one important point to keep in mind: For the on-site densities (that is, the densities within the PAW sphere), only l-decomposed charge densities up to LMAXMIX are written. Upon restart, the energies might, therefore, differ slightly from the fully converged energies. The discrepancies can be large for the DFT+U method. In this case, one might need to increase LMAXMIX to 4 (d-elements) or even 6 (f-elements).
Tip: To improve convergence and reduce the number of electronic steps, it is recommended to set ICHARG = 1 when starting calculations repeatedly with small changes in the input parameters.
- ICHARG=2
- Take superposition of atomic charge densities.
- ICHARG=4
- Read potential from file POT. The local potential on the file POT is written by the optimized-effective-potential methods (OEP), if the flag LVTOT=.TRUE. is supplied in the INCAR file. Supported as of VASP.5.1.
- ICHARG=10
- non-selfconsistent calculations: Adding 10 to the value of ICHARG, e.g., ICHARG=11 or 12 (or the less convenient value 10) means that the charge density will be kept constant during the entire electronic minimization.
- There are several reasons why to keep the charge density constant:
- ICHARG=11
- ICHARG=12
- Non-self-consistent calculations for a superposition of atomic charge densities. This is in the spirit of the non-self-consistent Harris-Foulkes functional. The stress and the forces calculated by VASP are correct, and it is possible to perform an ab-initio MD for the non-selfconsistent Harris-Foulkes functional.
Tip: If ICHARG is set to 11 or 12, it is strongly recommended to set LMAXMIX to twice the maximum l-quantum number in the pseudopotentials. Thus, for s and p elements LMAXMIX should be set to 2, for d elements LMAXMIX should be set to 4, and for f elements LMAXMIX should be set to 6.
The initial charge density is of importance in the following cases:
- If ICHARG≥10 the charge density remains constant during the run.
- For all algorithms except IALGO=5X the initial charge density is used to set up the initial Hamiltonian that is used in the first few non-selfconsistent steps, c.f., NELMDL tag.
Related tags and articles
CHGCAR, ISTART, LCHARG, LMAXMIX, NELMDL, INIWAV