IVDW: Difference between revisions

From VASP Wiki
No edit summary
Line 1: Line 1:
{{TAGDEF|IVDW|0 {{!}} 1 {{!}} 10 {{!}} 11 {{!}} 12 {{!}} 13 {{!}} 2 {{!}} 20 {{!}} 21 {{!}} 202 {{!}} 263 {{!}} 3 {{!}} 4|0 (no correction)}}
{{TAGDEF|IVDW|0 {{!}} 1 {{!}} 10 {{!}} 11 {{!}} 12 {{!}} 13 {{!}} 14 {{!}} 2 {{!}} 20 {{!}} 21 {{!}} 202 {{!}} 263 {{!}} 3 {{!}} 4|0 (no correction)}}


Description: {{TAG|IVDW}} specifies a vdW (dispersion) correction.
Description: {{TAG|IVDW}} specifies a vdW (dispersion) correction.
Line 14: Line 14:
*{{TAG|IVDW}}=12 : {{TAG|DFT-D3}} method with Becke-Johnson damping function{{cite|grimme:jcc:11}} (available as of VASP.5.3.4)
*{{TAG|IVDW}}=12 : {{TAG|DFT-D3}} method with Becke-Johnson damping function{{cite|grimme:jcc:11}} (available as of VASP.5.3.4)
*{{TAG|IVDW}}=13 : [[DFT-D4]] method{{cite|caldeweyher:jcp:2019}} (available as of VASP.6.2 as [[Makefile.include#DFT-D4_.28optional.29|external package]])
*{{TAG|IVDW}}=13 : [[DFT-D4]] method{{cite|caldeweyher:jcp:2019}} (available as of VASP.6.2 as [[Makefile.include#DFT-D4_.28optional.29|external package]])
*{{TAG|IVDW}}=14 : One of the methods available in the library libMBD of many-body dispersion methods{{cite|libmbd_1}}{{cite|libmbd_2}}{{cite|hermann:jcp:2023}} (available as of VASP.6.4.3 as [[Makefile.include#libMBD_.28optional.29|external package]])
*{{TAG|IVDW}}=2|20 : {{TAG|Tkatchenko-Scheffler method}}{{cite|tkatchenko:prl:09}} (available as of VASP.5.3.3)
*{{TAG|IVDW}}=2|20 : {{TAG|Tkatchenko-Scheffler method}}{{cite|tkatchenko:prl:09}} (available as of VASP.5.3.3)
*{{TAG|IVDW}}=21 : {{TAG|Tkatchenko-Scheffler method with iterative Hirshfeld partitioning}}{{cite|bucko:jctc:13}}{{cite|bucko:jcp:14}} (available as of VASP.5.3.5)
*{{TAG|IVDW}}=21 : {{TAG|Tkatchenko-Scheffler method with iterative Hirshfeld partitioning}}{{cite|bucko:jctc:13}}{{cite|bucko:jcp:14}} (available as of VASP.5.3.5)

Revision as of 14:34, 1 July 2024

IVDW = 0 | 1 | 10 | 11 | 12 | 13 | 14 | 2 | 20 | 21 | 202 | 263 | 3 | 4
Default: IVDW = 0 (no correction) 

Description: IVDW specifies a vdW (dispersion) correction.


For fundamental reasons, the semilocal and hybrid exchange-correlation functionals are unable to describe properly vdW interactions resulting from dynamical correlations between fluctuating charge distributions (called London dispersion forces). An approximate way to work around this problem and to get more reliable results for vdW systems is to add a dispersion correction term, , to the conventional KS-DFT energy :

can be calculated using one of the available approximate methods listed below.

With all methods listed above, a dispersion correction is added to the total energy, potential, interatomic forces and stress tensor, such that lattice relaxations, molecular dynamics, and vibrational analysis (via finite differences) can be performed. Note, however, that these correction schemes are currently not available for calculations based on density functional perturbation theory.

N.B.: The parameter LVDW used in previous versions of VASP (5.2.11 and later) to activate the DFT-D2 method is now obsolete. If LVDW=.TRUE. is defined, IVDW is automatically set to 1 (unless IVDW is specified in INCAR).

Related tags and articles

DFT-D2, DFT-D3, DFT-D4, Tkatchenko-Scheffler method, Self-consistent screening in Tkatchenko-Scheffler method, Tkatchenko-Scheffler method with iterative Hirshfeld partitioning, Many-body dispersion energy, Many-body dispersion energy with fractionally ionic model for polarizability, DFT-ulg, dDsC dispersion correction


See also the alternative vdW-DF functionals: LUSE_VDW, Nonlocal vdW-DF functionals.

Examples that use this tag


  1. S. Grimme, J. Comput. Chem. 27, 1787 (2006).
  2. S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, J. Chem. Phys. 132, 154104 (2010).
  3. S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).
  4. E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, and S. Grimme, J. Chem. Phys. 150, 154122 (2019).
  5. https://libmbd.github.io/
  6. https://github.com/libmbd/libmbd
  7. J. Hermann, M. Stöhr, S. Góger, S. Chaudhuri, B. Aradi, R. J. Maurer, and A. Tkatchenko, libMBD: A general-purpose package for scalable quantum many-body dispersion calculations, J. Chem. Phys. 159, 174802 (2023).
  8. A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
  9. T. Bučko, S. Lebègue, J. Hafner, and J. G. Ángyán, J. Chem. Theory Comput. 9, 4293 (2013)
  10. T. Bučko, S. Lebègue, J. G. Ángyán, and J. Hafner, J. Chem. Phys. 141, 034114 (2014).
  11. A. Tkatchenko, R. A. DiStasio, Jr., R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
  12. A. Ambrosetti, A. M. Reilly, and R. A. DiStasio Jr., J. Chem. Phys. 140, 018A508 (2014).
  13. T. Gould and T. Bučko, C6 Coefficients and Dipole Polarizabilities for All Atoms and Many Ions in Rows 1–6 of the Periodic Table, J. Chem. Theory Comput. 12, 3603 (2016).
  14. T. Gould, S. Lebègue, J. G. Ángyán, and T. Bučko, A Fractionally Ionic Approach to Polarizability and van der Waals Many-Body Dispersion Calculations, J. Chem. Theory Comput. 12, 5920 (2016).
  15. H. Kim, J.-M. Choi, and W. A. Goddard, III, J. Phys. Chem. Lett. 3, 360 (2012).
  16. S. N. Steinmann and C. Corminboeuf, J. Chem. Phys. 134, 044117 (2011).
  17. S. N. Steinmann and C. Corminboeuf, J. Chem. Theory Comput. 7, 3567 (2011).