Constrained molecular dynamics: Difference between revisions
Line 74: | Line 74: | ||
<ref name="Darve02">[http://dx.doi.org/10.1080/08927020211975 E. Darve, M. A. Wilson, and A. Pohorille, Mol. Simul. 28, 113 (2002).]</ref> | <ref name="Darve02">[http://dx.doi.org/10.1080/08927020211975 E. Darve, M. A. Wilson, and A. Pohorille, Mol. Simul. 28, 113 (2002).]</ref> | ||
<ref name="Fleurat05">[http://dx.doi.org/10.1063/1.1948367 P. Fleurat-Lessard and T. Ziegler, J. Chem. Phys. 123, 084101 (2005).]</ref> | <ref name="Fleurat05">[http://dx.doi.org/10.1063/1.1948367 P. Fleurat-Lessard and T. Ziegler, J. Chem. Phys. 123, 084101 (2005).]</ref> | ||
<ref name="Toton10">[http://dx.doi.org/10.1088/0953-8984/22/7/074205 D. Toton, C. D. Lorenz, N. Rompotis, N. Martsinovich, and L. Kantorovich, J. Phys.: Condens. Matter 22, 074205 (2010).]</ref> | <ref name="Toton10">[http://dx.doi.org/10.1088/0953-8984/22/7/074205 D. Toton, C. D. Lorenz, N. Rompotis, N. Martsinovich, and L. Kantorovich, J. Phys.: Condens. Matter 22, 074205 (2010).]</ref> | ||
<ref name="Kantorovich08">[http://dx.doi.org/10.1103/PhysRevB.78.094305 L. Kantorovich and N. Rompotis, Phys. Rev. B 78, 094305 (2008).]</ref> | <ref name="Kantorovich08">[http://dx.doi.org/10.1103/PhysRevB.78.094305 L. Kantorovich and N. Rompotis, Phys. Rev. B 78, 094305 (2008).]</ref> |
Revision as of 15:51, 13 March 2019
In general, constrained molecular dynamics generates biased statistical averages. It can be shown that the correct average for a quantity can be obtained using the formula:
where stands for the statistical average of the quantity enclosed in angular parentheses computed for a constrained ensemble and is a mass metric tensor defined as:
It can be shown that the free energy gradient can be computed using the equation:[1][2][3][4]
where is the Lagrange multiplier associated with the parameter used in the SHAKE algorithm.[5]
The free-energy difference between states (1) and (2) can be computed by integrating the free-energy gradients over a connecting path:
Note that as the free-energy is a state quantity, the choice of path connecting (1) with (2) is irrelevant.
Constrained molecular dynamics is performed using the SHAKE algorithm.[5]. In this algorithm, the Lagrangian for the system is extended as follows:
where the summation is over r geometric constraints, is the Lagrangian for the extended system, and λi is a Lagrange multiplier associated with a geometric constraint σi:
with ξi(q) being a geometric parameter and ξi is the value of ξi(q) fixed during the simulation.
In the SHAKE algorithm, the Lagrange multipliers λi are determined in the iterative procedure:
- Perform a standard MD step (leap-frog algorithm):
- Use the new positions q(t+Δt) to compute Lagrange multipliers for all constraints:
- Update the velocities and positions by adding a contribution due to restoring forces (proportional to λk):
- repeat steps 2-4 until either |σi(q)| are smaller than a predefined tolerance (determined by SHAKETOL), or the number of iterations exceeds SHAKEMAXITER.
Anderson thermostat
- For a constrained molecular dynamics run with Andersen thermostat, one has to:
- Set the standard MD-related tags: IBRION=0, TEBEG, POTIM, and NSW
- Set MDALGO=1, and choose an appropriate setting for ANDERSEN_PROB
- Define geometric constraints in the ICONST-file, and set the STATUS parameter for the constrained coordinates to 0
- When the free-energy gradient is to be computed, set LBLUEOUT=.TRUE.
References
- ↑ E. A. Carter, G. Ciccotti, J. T. Hynes, and R. Kapral, Chem. Phys. Lett. 156, 472 (1989).
- ↑ W. K. Den Otter and W. J. Briels, Mol. Phys. 98, 773 (2000).
- ↑ E. Darve, M. A. Wilson, and A. Pohorille, Mol. Simul. 28, 113 (2002).
- ↑ P. Fleurat-Lessard and T. Ziegler, J. Chem. Phys. 123, 084101 (2005).
- ↑ a b J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comp. Phys. 23, 327 (1977).
Cite error: <ref>
tag with name "Toton10" defined in <references>
is not used in prior text.
Cite error: <ref>
tag with name "Kantorovich08" defined in <references>
is not used in prior text.