Constrained molecular dynamics: Difference between revisions

From VASP Wiki
Line 69: Line 69:
== References ==
== References ==
<references>
<references>
<ref name="Andersen80">[http://dx.doi.org/10.1063/1.439486 H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).]</ref>
<ref name="Ryckaert77">[http://dx.doi.org/10.1016/0021-9991(77)90098-5 J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comp. Phys. 23, 327 (1977).]</ref>
<ref name="Ryckaert77">[http://dx.doi.org/10.1016/0021-9991(77)90098-5 J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comp. Phys. 23, 327 (1977).]</ref>
<ref name="Carter89">[http://dx.doi.org/10.1016/S0009-2614(89)87314-2 E. A. Carter, G. Ciccotti, J. T. Hynes, and R. Kapral, Chem. Phys. Lett. 156, 472 (1989).]</ref>
<ref name="Carter89">[http://dx.doi.org/10.1016/S0009-2614(89)87314-2 E. A. Carter, G. Ciccotti, J. T. Hynes, and R. Kapral, Chem. Phys. Lett. 156, 472 (1989).]</ref>
Line 75: Line 74:
<ref name="Darve02">[http://dx.doi.org/10.1080/08927020211975 E. Darve, M. A. Wilson, and A. Pohorille, Mol. Simul. 28, 113 (2002).]</ref>
<ref name="Darve02">[http://dx.doi.org/10.1080/08927020211975 E. Darve, M. A. Wilson, and A. Pohorille, Mol. Simul. 28, 113 (2002).]</ref>
<ref name="Fleurat05">[http://dx.doi.org/10.1063/1.1948367 P. Fleurat-Lessard and T. Ziegler, J. Chem. Phys. 123, 084101 (2005).]</ref>
<ref name="Fleurat05">[http://dx.doi.org/10.1063/1.1948367 P. Fleurat-Lessard and T. Ziegler, J. Chem. Phys. 123, 084101 (2005).]</ref>
<ref name="Allen91">M. P. Allen and D. J. Tildesley, ''Computer simulation of liquids'', Oxford university press: New York, 1991.</ref>
<ref name="Parrinello80">[http://dx.doi.org/10.1103/PhysRevLett.45.1196 M. Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980).]</ref>
<ref name="Parrinello80">[http://dx.doi.org/10.1103/PhysRevLett.45.1196 M. Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980).]</ref>
<ref name="Parrinello81">[http://dx.doi.org/10.1063/1.328693 M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).]</ref>
<ref name="Parrinello81">[http://dx.doi.org/10.1063/1.328693 M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).]</ref>

Revision as of 15:51, 13 March 2019

In general, constrained molecular dynamics generates biased statistical averages. It can be shown that the correct average for a quantity can be obtained using the formula:

where stands for the statistical average of the quantity enclosed in angular parentheses computed for a constrained ensemble and is a mass metric tensor defined as:

It can be shown that the free energy gradient can be computed using the equation:[1][2][3][4]

where is the Lagrange multiplier associated with the parameter used in the SHAKE algorithm.[5]

The free-energy difference between states (1) and (2) can be computed by integrating the free-energy gradients over a connecting path:

Note that as the free-energy is a state quantity, the choice of path connecting (1) with (2) is irrelevant.


Constrained molecular dynamics is performed using the SHAKE algorithm.[5]. In this algorithm, the Lagrangian for the system is extended as follows:

where the summation is over r geometric constraints, is the Lagrangian for the extended system, and λi is a Lagrange multiplier associated with a geometric constraint σi:

with ξi(q) being a geometric parameter and ξi is the value of ξi(q) fixed during the simulation.

In the SHAKE algorithm, the Lagrange multipliers λi are determined in the iterative procedure:

  1. Perform a standard MD step (leap-frog algorithm):
  2. Use the new positions q(tt) to compute Lagrange multipliers for all constraints:
  3. Update the velocities and positions by adding a contribution due to restoring forces (proportional to λk):
  4. repeat steps 2-4 until either |σi(q)| are smaller than a predefined tolerance (determined by SHAKETOL), or the number of iterations exceeds SHAKEMAXITER.

Anderson thermostat

  • For a constrained molecular dynamics run with Andersen thermostat, one has to:
  1. Set the standard MD-related tags: IBRION=0, TEBEG, POTIM, and NSW
  2. Set MDALGO=1, and choose an appropriate setting for ANDERSEN_PROB
  3. Define geometric constraints in the ICONST-file, and set the STATUS parameter for the constrained coordinates to 0
  4. When the free-energy gradient is to be computed, set LBLUEOUT=.TRUE.


References

Cite error: <ref> tag with name "Parrinello80" defined in <references> is not used in prior text.
Cite error: <ref> tag with name "Parrinello81" defined in <references> is not used in prior text.
Cite error: <ref> tag with name "Toton10" defined in <references> is not used in prior text.
Cite error: <ref> tag with name "Kantorovich08" defined in <references> is not used in prior text.