LEFG: Difference between revisions

From VASP Wiki
No edit summary
Line 15: Line 15:


To convert the ''V''<sub>zz</sub> values into the ''C''<sub>q</sub> often encountered in NMR literature, one has to specify the nuclear quadrupole moment by means of the {{TAG|QUAD_EFG}}-tag.  
To convert the ''V''<sub>zz</sub> values into the ''C''<sub>q</sub> often encountered in NMR literature, one has to specify the nuclear quadrupole moment by means of the {{TAG|QUAD_EFG}}-tag.  
==Input==
A typical {{FILE|INCAR}} file is given below:
<pre>
ENCUT = 400              # Plane-wave energy cutoff in eV
ISMEAR = 0; SIGMA = 0.01 # Defines the type of smearing; smearing width in eV
EDIFF = 1E-8            # Energy cutoff criterion for the SCF loop, in eV
PREC = Accurate          # Sets the "precision" mode
LASPH = .TRUE.          # Non-spherical contributions to the gradient of the density in the PAW spheres
LEFG = .TRUE.            # Electric field gradient calculations
QUAD_EFG = 0. -696. 20.44 0. 2.860  # Nuclear quadrupolar moments for Pb I N O D
</pre>
{{NB|important|Make sure to replace the {{TAGO|QUAD_EFG}} in the {{FILE|INCAR}} with the values for the isotopes in your system.}}
==Output==
The EFG is listed atom-wise after the SCF cycle has been completed. First, the full 3x3 tensor is printed:
<pre>
  Electric field gradients (V/A^2)
---------------------------------------------------------------------
  ion      V_xx      V_yy      V_zz      V_xy      V_xz      V_yz
---------------------------------------------------------------------
    1        -        -        -        -        -        -     
</pre>
The tensor is then diagonalized and reprinted:
<pre>
  Electric field gradients after diagonalization (V/A^2)
  (convention: |V_zz| > |V_xx| > |V_yy|)
----------------------------------------------------------------------
  ion      V_xx      V_yy      V_zz    asymmetry (V_yy - V_xx)/ V_zz
----------------------------------------------------------------------
    1      -        -        -            -       
</pre>
The corresponding eigenvectors are printed atom-wise. Finally, the quadrupolar parameters are presented, which, unlike the EFG, may be measured by experiment.
<pre>
            NMR quadrupolar parameters
  Cq : quadrupolar parameter    Cq=e*Q*V_zz/h
  eta: asymmetry parameters    (V_yy - V_xx)/ V_zz
  Q  : nuclear electric quadrupole moment in mb (millibarn)
----------------------------------------------------------------------
  ion      Cq(MHz)      eta      Q (mb)
----------------------------------------------------------------------
    1        -            -        -                     
</pre>


==Recommendations and advice==
==Recommendations and advice==

Revision as of 13:38, 6 March 2025

LEFG = .TRUE. | .FALSE.
Default: LEFG = .FALSE. 

Description: The LEFG computes the electric field gradient (EFG) at positions of the atomic nuclei.


For LEFG=.TRUE., the electric field gradient tensors at the positions of the atomic nuclei are calculated using the method of Petrilli et al. [1].

The EFG tensors are symmetric. The principal components Vii and asymmetry parameter η are printed for each atom. Following convention the principal components Vii are ordered such that:

The asymmetry parameter is defined as . For so-called "quadrupolar nuclei", i.e., nuclei with nuclear spin I>1/2, NMR experiments can access Vzz and η.

To convert the Vzz values into the Cq often encountered in NMR literature, one has to specify the nuclear quadrupole moment by means of the QUAD_EFG-tag.

Input

A typical INCAR file is given below:

 ENCUT = 400              # Plane-wave energy cutoff in eV
 ISMEAR = 0; SIGMA = 0.01 # Defines the type of smearing; smearing width in eV

 EDIFF = 1E-8             # Energy cutoff criterion for the SCF loop, in eV
 PREC = Accurate          # Sets the "precision" mode
 LASPH = .TRUE.           # Non-spherical contributions to the gradient of the density in the PAW spheres

 LEFG = .TRUE.            # Electric field gradient calculations
 QUAD_EFG = 0. -696. 20.44 0. 2.860  # Nuclear quadrupolar moments for Pb I N O D
Important: Make sure to replace the QUAD_EFG in the INCAR with the values for the isotopes in your system.

Output

The EFG is listed atom-wise after the SCF cycle has been completed. First, the full 3x3 tensor is printed:

  Electric field gradients (V/A^2)
 ---------------------------------------------------------------------
  ion       V_xx      V_yy      V_zz      V_xy      V_xz      V_yz
 ---------------------------------------------------------------------
    1        -         -         -         -         -         -       

The tensor is then diagonalized and reprinted:

  Electric field gradients after diagonalization (V/A^2)
  (convention: |V_zz| > |V_xx| > |V_yy|)
 ----------------------------------------------------------------------
  ion       V_xx      V_yy      V_zz     asymmetry (V_yy - V_xx)/ V_zz
 ----------------------------------------------------------------------
    1       -         -         -             -         

The corresponding eigenvectors are printed atom-wise. Finally, the quadrupolar parameters are presented, which, unlike the EFG, may be measured by experiment.

            NMR quadrupolar parameters

  Cq : quadrupolar parameter    Cq=e*Q*V_zz/h
  eta: asymmetry parameters     (V_yy - V_xx)/ V_zz
  Q  : nuclear electric quadrupole moment in mb (millibarn)
 ----------------------------------------------------------------------
  ion       Cq(MHz)       eta       Q (mb)
 ----------------------------------------------------------------------
    1        -             -         -                      

Recommendations and advice

Tight settings are required for calculating the electric field gradient.

Input parameters

  • A larger ENCUT value than usual, generally much higher than the value given by ENMAX in the POTCAR file, e.g. 800 eV for C in diamond, rather than the standard 400 eV.
  • A small EDIFF is required to provide converged chemical shifts, e.g. 1E-8 eV.
  • Tighter precision, e.g. PREC = Accurate.
  • Non-spherical contributions to the gradient of the density inside PAW spheres, i.e. LASPH = .TRUE.

Structure

  • The structure is extremely important, so using the experimental structure can improve results. Differences of 0.0025 in internal coordinates can make a difference of 50 % to [1].

PAW pseudopotentials

  • The use of PAW potentials has a strong influence, GW POTCAR files often improve values.
  • Semi-core electrons can be important (check the POSCAR files with *_pv or *_sv) as well as explicit inclusion of augmentation channels with -projectors.
Mind: Several definitions of are used in the NMR community, ensure that you are comparing between the same definitions in calculation and experiment.
Important: For heavy nuclei inaccuracies are to be expected because of an incomplete treatment of relativistic effects.

Related tags and articles

QUAD_EFG

Examples that use this tag

References