LEFG: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 32: Line 32:
<math>^{27}\mathrm{Al}</math> is the stable isotope of Al with a natural abundance of 100% and <math>Q = 146.6</math>. The stable isotopes <math>^{12}\mathrm{C}</math> and <math>^{13}\mathrm{C}</math> are not quadrupolar nuclei, however, the radioactive <math>^{11}\mathrm{C}</math> is. It has <math>Q = 33.27</math>. For Si it is pointless to calculate a <math>C_q</math> since all stable isotopes have <math>I \le 1/2</math>. No moments are known for the other isotopes.
<math>^{27}\mathrm{Al}</math> is the stable isotope of Al with a natural abundance of 100% and <math>Q = 146.6</math>. The stable isotopes <math>^{12}\mathrm{C}</math> and <math>^{13}\mathrm{C}</math> are not quadrupolar nuclei, however, the radioactive <math>^{11}\mathrm{C}</math> is. It has <math>Q = 33.27</math>. For Si it is pointless to calculate a <math>C_q</math> since all stable isotopes have <math>I \le 1/2</math>. No moments are known for the other isotopes.
--!>
--!>
'''Beware''': for heavy nuclei inaccuracies are to be expected because of an incomplete treatment of relativistic effects.
'''Beware''': for heavy nuclei inaccuracies are to be expected because of an incomplete treatment of relativistic effects.



Revision as of 13:21, 27 February 2025

LEFG = .TRUE. | .FALSE.
Default: LEFG = .FALSE. 

Description: The LEFG computes the Electric Field Gradient at positions of the atomic nuclei.


For LEFG=.TRUE., the electric field gradient tensors at the positions of the atomic nuclei are calculated using the method of Petrilli et al. [1].

The EFG tensors are symmetric. The principal components Vii and asymmetry parameter η are printed for each atom. Following convention the principal components Vii are ordered such that:

The asymmetry parameter is defined as . For so-called "quadrupolar nuclei", i.e., nuclei with nuclear spin I>1/2, NMR experiments can access Vzz and η.

Beware: Attaining convergence can require somewhat smaller EDIFF than the default of 1.e-4 and somewhat larger cutoff ENCUT than default with PREC=A. Moreover, the calculation of EFGs typically requires high quality PAW data sets. Semi-core electrons can be important (check with *_pv or *_sv POTCARs) as well as explicit inclusion of augmentation channel(s) with d-projectors.

To convert the Vzz values into the Cq often encountered in NMR literature, one has to specify the nuclear quadrupole moment by means of the QUAD_EFG-tag.