Many-body dispersion energy: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
The many-body dispersion energy method (MBD@rsSCS) of Tkatchenko et al.{{cite|tkatchenko:prl:12}}{{cite|ambrosetti:jcp:14}} is based on the random-phase expression for the correlation energy | The many-body dispersion energy method (MBD@rsSCS) of Tkatchenko et al.,{{cite|tkatchenko:prl:12}}{{cite|ambrosetti:jcp:14}} invoked by setting {{TAG|IVDW}}=202, is based on the random-phase expression for the correlation energy | ||
:<math> E_c = \int_{0}^{\infty} \frac{d\omega}{2\pi} \mathrm{Tr}\left\{\mathrm{ln} (1-v\chi_0(i\omega))+v\chi_0(i\omega) \right\} </math> | :<math> E_c = \int_{0}^{\infty} \frac{d\omega}{2\pi} \mathrm{Tr}\left\{\mathrm{ln} (1-v\chi_0(i\omega))+v\chi_0(i\omega) \right\} </math> | ||
Line 10: | Line 10: | ||
embedded in the system in a given geometrical arrangement. The components of <math>\mathbf{A}_{LR}</math> are obtained using an atoms-in-molecule approach as employed in the pairwise {{TAG|Tkatchenko-Scheffler method}} (see | embedded in the system in a given geometrical arrangement. The components of <math>\mathbf{A}_{LR}</math> are obtained using an atoms-in-molecule approach as employed in the pairwise {{TAG|Tkatchenko-Scheffler method}} (see | ||
references {{cite|ambrosetti:jcp:14}}{{cite|bucko:jpcm:16}} for details). The input reference data for non-interacting atoms can be optionally defined via the parameters {{TAG|VDW_ALPHA}}, {{TAG|VDW_C6}}, and {{TAG|VDW_R0}} | references {{cite|ambrosetti:jcp:14}}{{cite|bucko:jpcm:16}} for details). The input reference data for non-interacting atoms can be optionally defined via the parameters {{TAG|VDW_ALPHA}}, {{TAG|VDW_C6}}, and {{TAG|VDW_R0}} | ||
(described by the {{TAG|Tkatchenko-Scheffler method}}). This method has one free parameter (<math>\beta</math>) that must be adjusted for each exchange-correlation functional. The default value of <math>\beta</math>=0.83 corresponds to the PBE functional ({{TAG|GGA}}{{=}}PE). If another functional is used, the value of <math>\beta</math> must be specified via {{TAG|VDW_SR}} in the {{TAG|INCAR}} file. The | (described by the {{TAG|Tkatchenko-Scheffler method}}). This method has one free parameter (<math>\beta</math>) that must be adjusted for each exchange-correlation functional. The default value of <math>\beta</math>=0.83 corresponds to the PBE functional ({{TAG|GGA}}{{=}}PE). If another functional is used, the value of <math>\beta</math> must be specified via {{TAG|VDW_SR}} in the {{TAG|INCAR}} file. | ||
The following optional parameters can be user-defined (the given values are the default ones): | |||
*{{TAG|VDW_SR}}=0.83 : scaling parameter <math>\beta</math> | *{{TAG|VDW_SR}}=0.83 : scaling parameter <math>\beta</math> |
Revision as of 10:36, 24 February 2025
The many-body dispersion energy method (MBD@rsSCS) of Tkatchenko et al.,[1][2] invoked by setting IVDW=202, is based on the random-phase expression for the correlation energy
whereby the response function is approximated by a sum of atomic contributions represented by quantum harmonic oscillators. The expression for the dispersion energy used in the VASP k-space implementation of the MBD@rsSCS method (see reference [3] for details) is as follows:
where is the frequency-dependent polarizability matrix and is the long-range interaction tensor, which describes the interaction of the screened polarizabilities embedded in the system in a given geometrical arrangement. The components of are obtained using an atoms-in-molecule approach as employed in the pairwise Tkatchenko-Scheffler method (see references [2][3] for details). The input reference data for non-interacting atoms can be optionally defined via the parameters VDW_ALPHA, VDW_C6, and VDW_R0 (described by the Tkatchenko-Scheffler method). This method has one free parameter () that must be adjusted for each exchange-correlation functional. The default value of =0.83 corresponds to the PBE functional (GGA=PE). If another functional is used, the value of must be specified via VDW_SR in the INCAR file.
The following optional parameters can be user-defined (the given values are the default ones):
- VDW_SR=0.83 : scaling parameter
- LVDWEXPANSION=.FALSE. : writes the two- to six-body contributions to the MBD dispersion energy in the OUTCAR (LVDWEXPANSION=.TRUE.)
- LSCSGRAD=.TRUE. : compute gradients (or not)
- VDW_ALPHA, VDW_C6, VDW_R0 : atomic reference (see also Tkatchenko-Scheffler method)
- ITIM=-1: if set to +1, apply eigenvalue remapping to avoid unphysical cases where the eigenvalues of the matrix
are non-positive, see reference[4] for details
Details of the implementation of the MBD@rsSCS method in VASP are presented in reference [3].
Mind:
|
Related tags and articles
VDW_ALPHA, VDW_C6, VDW_R0, VDW_SR, LVDWEXPANSION, LSCSGRAD, IVDW, Tkatchenko-Scheffler method, Self-consistent screening in Tkatchenko-Scheffler method, Tkatchenko-Scheffler method with iterative Hirshfeld partitioning, Many-body dispersion energy with fractionally ionic model for polarizability
References
- ↑ A. Tkatchenko, R. A. DiStasio, Jr., R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
- ↑ a b A. Ambrosetti, A. M. Reilly, and R. A. DiStasio Jr., J. Chem. Phys. 140, 018A508 (2014).
- ↑ a b c d T. Bučko, S. Lebègue, T. Gould, and J. G. Ángyán, J. Phys.: Condens. Matter 28, 045201 (2016).
- ↑ T. Gould, S. Lebègue, J. G. Ángyán, and T. Bučko, J. Chem. Theory Comput. 12, 5920 (2016).