Coulomb singularity: Difference between revisions

From VASP Wiki
(Created page with "dwwd")
 
No edit summary
Line 1: Line 1:
dwwd
The Coulomb potential in reciprocal space
:<math>V(G)=\frac{4\pi e^2}{G^2}</math>
diverges for small G vectors.
To alleviate this issue and improve the convergence of the exact exchange integral with respect to supercell size (or k-point mesh density) different methods have been proposed: the auxiliary function methods{{cite|gygi:prb:86}}, probe-charge Ewald {{cite|massidda:prb:93}} ({{TAG|HFALPHA}}), and Coulomb truncation methods{{cite|spenceralavi:prb:08}} ({{TAG|HFRCUT}}).
These mostly involve modifying the Coulomb Kernel in a way that yields the same result as the unmodified kernel within the limit of large supercell sizes.

Revision as of 08:47, 10 May 2022

The Coulomb potential in reciprocal space

diverges for small G vectors. To alleviate this issue and improve the convergence of the exact exchange integral with respect to supercell size (or k-point mesh density) different methods have been proposed: the auxiliary function methods[1], probe-charge Ewald [2] (HFALPHA), and Coulomb truncation methods[3] (HFRCUT). These mostly involve modifying the Coulomb Kernel in a way that yields the same result as the unmodified kernel within the limit of large supercell sizes.