NiO LSDA+U: Difference between revisions
No edit summary |
|||
(19 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
== Task == | == Task == | ||
Calculation of antiferromagnetic NiO in the | Calculation of antiferromagnetic NiO in the DFT+U (Dudarev's approach). | ||
== Input == | == Input == | ||
Line 48: | Line 48: | ||
{{TAGBL|LDAUU}} = 8.00 0.00 | {{TAGBL|LDAUU}} = 8.00 0.00 | ||
{{TAGBL|LDAUJ}} = 0.95 0.00 | {{TAGBL|LDAUJ}} = 0.95 0.00 | ||
{{TAGBL|LDAUPRINT}} = | {{TAGBL|LDAUPRINT}} = 1 | ||
{{TAGBL|LMAXMIX}} = 4 ! Important: mix paw occupancies up to L=4 | {{TAGBL|LMAXMIX}} = 4 ! Important: mix paw occupancies up to L=4 | ||
*Switching on | *Switching on DFT+U using Dudarev's approach ({{TAG|LDAUTYPE}}=2). | ||
*{{TAG|LDAUL}} selects the l quantum number for which on site interaction is added (-1 = no on site interaction). | *{{TAG|LDAUL}} selects the l quantum number for which on site interaction is added (-1 = no on site interaction). | ||
*The U and J parameters have to be specified. | *The U and J parameters have to be specified. | ||
Line 69: | Line 69: | ||
== Calculation == | == Calculation == | ||
=== On site occupancies === | |||
*The sample output for the on site occupancies in the {{TAG|OUTCAR}} file should look like the following (the meaning of the columns after the second equality sign is given below): | |||
atom = 1 type = 1 1 = 2 | atom = 1 type = 1 1 = 2 | ||
Line 90: | Line 91: | ||
o = 1.0248 v = -0.0032 0.0016 -1.0000 0.0016 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | o = 1.0248 v = -0.0032 0.0016 -1.0000 0.0016 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | ||
o = 1.0248 v = 0.0000 0.0027 0.0000 -0.0027 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | o = 1.0248 v = 0.0000 0.0027 0.0000 -0.0027 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | ||
<math>\qquad \qquad \qquad \qquad \qquad \qquad d_{xy}^{\uparrow} \qquad d_{yz}^{\uparrow} \qquad \quad d_{z^{2}-r^{2}}^{\uparrow} \qquad d_{xz}^{\uparrow} \qquad d_{z^{2}-y^{2}}^{\uparrow} \qquad d_{xy}^{\downarrow} \qquad \quad d_{yz}^{\downarrow} \qquad \quad d_{z^{2}-r^{2}}^{\downarrow} \qquad d_{xz}^{\downarrow} \qquad d_{z^{2}-y^{2}}^{\downarrow}</math> | |||
<math>d_{xy}^{\uparrow}</math> | *Just for comparison when U=0 and J=0 (i.e. just LSDA) the on site occupancies are as follows: | ||
o = 0.3462 v = 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0048 0.0028 0.9951 0.0020 -0.0986 | |||
o = 0.3462 v = 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0039 -0.0986 -0.0044 -0.9951 | |||
o = 0.9491 v = 0.0000 0.0000 0.0000 0.0000 0.0000 0.5774 0.5774 0.0000 0.5774 0.0000 | |||
o = 0.9495 v = 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0588 0.7347 -0.0004 -0.6759 0.0059 | |||
o = 0.9495 v = 0.0000 0.0000 0.0000 0.0000 0.0000 0.8144 -0.3563 0.0059 -0.4581 0.0004 | |||
o = 0.9527 v = 0.0477 -0.0256 0.9974 -0.0221 -0.0420 0.0000 0.0000 0.0000 0.0000 0.0000 | |||
o = 0.9527 v = 0.0020 0.0403 0.0420 -0.0423 0.9974 0.0000 0.0000 0.0000 0.0000 0.0000 | |||
o = 0.9598 v = 0.5774 0.5774 0.0000 0.5774 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | |||
o = 0.9599 v = -0.1186 0.7577 0.0085 -0.6391 -0.0579 0.0000 0.0000 0.0000 0.0000 0.0000 | |||
o = 0.9599 v = 0.8064 -0.3005 -0.0570 -0.5059 -0.0085 0.0000 0.0000 0.0000 0.0000 0.0000 | |||
<math>\qquad \qquad \qquad \qquad \qquad \qquad d_{xy}^{\uparrow} \qquad d_{yz}^{\uparrow} \qquad \quad d_{z^{2}-r^{2}}^{\uparrow} \qquad d_{xz}^{\uparrow} \qquad d_{z^{2}-y^{2}}^{\uparrow} \qquad d_{xy}^{\downarrow} \qquad \quad d_{yz}^{\downarrow} \qquad \quad d_{z^{2}-r^{2}}^{\downarrow} \qquad d_{xz}^{\downarrow} \qquad d_{z^{2}-y^{2}}^{\downarrow}</math> | |||
=== Magnetic moments === | |||
*The sample output for the l dependent local magnetic moments is given in the {{TAG|OUTCAR}} file: | |||
magnetization (x) | |||
# of ion s p d tot | |||
---------------------------------------- | |||
1 -0.003 -0.006 1.721 1.711 | |||
2 0.003 0.006 -1.719 -1.710 | |||
3 0.000 -0.001 0.000 -0.001 | |||
4 0.000 -0.001 0.000 -0.001 | |||
------------------------------------------------ | |||
tot 0.000 -0.002 0.002 0.000 | |||
=== DOS === | |||
*The Ni lm decomposed DOS for the d states should look like the following: | |||
[[File:Fig NiO LSDA U 1.png|900px]] | |||
=== Total energy === | |||
*The on site occupany matrix is not idempotent, hence the total energy contains a penalty contribution. | |||
*The sample output for the total energy in the {{TAG|OSZICAR}} file should look like the following: | |||
... | |||
DAV: 15 -0.229633055256E+02 -0.11057E-03 -0.50020E-05 520 0.104E-01 0.118E-02 | |||
DAV: 16 -0.229633263321E+02 -0.20806E-04 -0.16650E-05 520 0.492E-02 | |||
1 F= -.22963326E+02 E0= -.22963326E+02 d E =0.000000E+00 mag= 0.0000 | |||
*The sample output for a calculation using just LSDA is given below: | |||
... | |||
DAV: 13 -0.267936242334E+02 0.12794E-03 -0.12638E-04 552 0.298E-01 0.169E-02 | |||
DAV: 14 -0.267936352231E+02 -0.10990E-04 -0.21775E-05 520 0.107E-01 | |||
1 F= -.26793635E+02 E0= -.26793635E+02 d E =0.000000E+00 mag= 0.0000 | |||
*The total energy for (U-J)>0 is always higher than for (U-J)=0. | |||
*Comparing the total energies from calculations with different (U-J) is meaningless! | |||
== Download == | == Download == | ||
[ | [[Media:4 3 NiO LSDA+U.tgz| 4_3_NiO_LSDA+U.tgz]] | ||
{{Template:Magnetism}} | |||
Back to the [[The_VASP_Manual|main page]]. | |||
[[Category:Examples]] | [[Category:Examples]] |
Latest revision as of 08:49, 11 April 2023
Overview > fcc Ni (revisited) > NiO > NiO LSDA+U > Spin-orbit coupling in a Ni monolayer > Spin-orbit coupling in a Fe monolayer >constraining local magnetic moments > List of tutorials
Task
Calculation of antiferromagnetic NiO in the DFT+U (Dudarev's approach).
Input
POSCAR
AFM NiO 4.17 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 2 2 Cartesian 0.0 0.0 0.0 1.0 1.0 1.0 0.5 0.5 0.5 1.5 1.5 1.5
INCAR
SYSTEM = NiO ISTART = 0 ISPIN = 2 MAGMOM = 2.0 -2.0 2*0 ENMAX = 250.0 EDIFF = 1E-3 ISMEAR = -5 AMIX = 0.2 BMIX = 0.00001 AMIX_MAG = 0.8 BMIX_MAG = 0.00001 LORBIT = 11 LDAU = .TRUE. LDAUTYPE = 2 LDAUL = 2 -1 LDAUU = 8.00 0.00 LDAUJ = 0.95 0.00 LDAUPRINT = 1 LMAXMIX = 4 ! Important: mix paw occupancies up to L=4
- Switching on DFT+U using Dudarev's approach (LDAUTYPE=2).
- LDAUL selects the l quantum number for which on site interaction is added (-1 = no on site interaction).
- The U and J parameters have to be specified.
- Print occupation matrices in the OUTCAR file (LDAUPRINT=2.
- L, U, and J must be specified for all atomic types!
KPOINTS
k-points 0 gamma 4 4 4 0 0 0
Calculation
On site occupancies
- The sample output for the on site occupancies in the OUTCAR file should look like the following (the meaning of the columns after the second equality sign is given below):
atom = 1 type = 1 1 = 2 onsite density matrix ... ... occupancies and eigenvectors o = 0.1696 v = 0.0000 0.0000 0.0000 0.0000 0.0000 0.0013 -0.0006 -0.9999 -0.0007 -0.0104 o = 0.1696 v = 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0011 -0.0104 0.0011 0.9999 o = 0.9770 v = 0.0000 0.0000 0.0000 0.0000 0.0000 0.7787 -0.1766 0.0015 -0.6020 0.0005 o = 0.9770 v = 0.0000 0.0000 0.0000 0.0000 0.0000 0.2456 -0.7972 0.0005 0.5516 -0.0015 o = 0.9770 v = 0.0000 0.0000 0.0000 0.0000 0.0000 0.5774 0.5774 0.0000 0.5774 0.0000 o = 0.9803 v = -0.0193 0.7166 0.0001 -0.6972 -0.0039 0.0000 0.0000 0.0000 0.0000 0.0000 o = 0.9803 v = 0.8163 -0.3914 -0.0039 -0.4249 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 o = 0.9803 v = 0.5774 0.5774 0.0000 0.5774 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 o = 1.0248 v = -0.0032 0.0016 -1.0000 0.0016 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 o = 1.0248 v = 0.0000 0.0027 0.0000 -0.0027 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
- Just for comparison when U=0 and J=0 (i.e. just LSDA) the on site occupancies are as follows:
o = 0.3462 v = 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0048 0.0028 0.9951 0.0020 -0.0986 o = 0.3462 v = 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0039 -0.0986 -0.0044 -0.9951 o = 0.9491 v = 0.0000 0.0000 0.0000 0.0000 0.0000 0.5774 0.5774 0.0000 0.5774 0.0000 o = 0.9495 v = 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0588 0.7347 -0.0004 -0.6759 0.0059 o = 0.9495 v = 0.0000 0.0000 0.0000 0.0000 0.0000 0.8144 -0.3563 0.0059 -0.4581 0.0004 o = 0.9527 v = 0.0477 -0.0256 0.9974 -0.0221 -0.0420 0.0000 0.0000 0.0000 0.0000 0.0000 o = 0.9527 v = 0.0020 0.0403 0.0420 -0.0423 0.9974 0.0000 0.0000 0.0000 0.0000 0.0000 o = 0.9598 v = 0.5774 0.5774 0.0000 0.5774 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 o = 0.9599 v = -0.1186 0.7577 0.0085 -0.6391 -0.0579 0.0000 0.0000 0.0000 0.0000 0.0000 o = 0.9599 v = 0.8064 -0.3005 -0.0570 -0.5059 -0.0085 0.0000 0.0000 0.0000 0.0000 0.0000
Magnetic moments
- The sample output for the l dependent local magnetic moments is given in the OUTCAR file:
magnetization (x) # of ion s p d tot ---------------------------------------- 1 -0.003 -0.006 1.721 1.711 2 0.003 0.006 -1.719 -1.710 3 0.000 -0.001 0.000 -0.001 4 0.000 -0.001 0.000 -0.001 ------------------------------------------------ tot 0.000 -0.002 0.002 0.000
DOS
- The Ni lm decomposed DOS for the d states should look like the following:
Total energy
- The on site occupany matrix is not idempotent, hence the total energy contains a penalty contribution.
- The sample output for the total energy in the OSZICAR file should look like the following:
... DAV: 15 -0.229633055256E+02 -0.11057E-03 -0.50020E-05 520 0.104E-01 0.118E-02 DAV: 16 -0.229633263321E+02 -0.20806E-04 -0.16650E-05 520 0.492E-02 1 F= -.22963326E+02 E0= -.22963326E+02 d E =0.000000E+00 mag= 0.0000
- The sample output for a calculation using just LSDA is given below:
... DAV: 13 -0.267936242334E+02 0.12794E-03 -0.12638E-04 552 0.298E-01 0.169E-02 DAV: 14 -0.267936352231E+02 -0.10990E-04 -0.21775E-05 520 0.107E-01 1 F= -.26793635E+02 E0= -.26793635E+02 d E =0.000000E+00 mag= 0.0000
- The total energy for (U-J)>0 is always higher than for (U-J)=0.
- Comparing the total energies from calculations with different (U-J) is meaningless!
Download
Overview > fcc Ni (revisited) > NiO > NiO LSDA+U > Spin-orbit coupling in a Ni monolayer > Spin-orbit coupling in a Fe monolayer >constraining local magnetic moments > List of tutorials
Back to the main page.