LEFG: Difference between revisions

From VASP Wiki
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 15: Line 15:


To convert the ''V''<sub>zz</sub> values into the ''C''<sub>q</sub> often encountered in NMR literature, one has to specify the nuclear quadrupole moment by means of the {{TAG|QUAD_EFG}}-tag.  
To convert the ''V''<sub>zz</sub> values into the ''C''<sub>q</sub> often encountered in NMR literature, one has to specify the nuclear quadrupole moment by means of the {{TAG|QUAD_EFG}}-tag.  
{{NB|mind|Several definitions of <math>C_q</math> are used in the NMR community, ensure that you are comparing between the same definitions in calculation and experiment.}}
{{NB|important|For heavy nuclei inaccuracies are to be expected because of an incomplete treatment of relativistic effects.}}
==Input==
A typical {{FILE|INCAR}} file is given below:
<pre>
ENCUT = 400             
ISMEAR = 0; SIGMA = 0.01
EDIFF = 1E-8           
PREC = Accurate         
LASPH = .TRUE.         
LEFG = .TRUE.           
QUAD_EFG = 0. -696. 20.44 0. 2.860  # Nuclear quadrupolar moments for Pb I N O D
</pre>
{{NB|important|Make sure to replace the {{TAGO|QUAD_EFG}} in the {{FILE|INCAR}} with the values for the isotopes in your system.}}
==Output==
The EFG is listed atom-wise after the SCF cycle has been completed. First, the full 3x3 tensor is printed:
<pre>
  Electric field gradients (V/A^2)
---------------------------------------------------------------------
  ion      V_xx      V_yy      V_zz      V_xy      V_xz      V_yz
---------------------------------------------------------------------
    1        -        -        -        -        -        -     
</pre>
The tensor is then diagonalized and reprinted:
<pre>
  Electric field gradients after diagonalization (V/A^2)
  (convention: |V_zz| > |V_xx| > |V_yy|)
----------------------------------------------------------------------
  ion      V_xx      V_yy      V_zz    asymmetry (V_yy - V_xx)/ V_zz
----------------------------------------------------------------------
    1      -        -        -            -       
</pre>


==Recommendations and advice==
The corresponding eigenvectors are printed atom-wise. Finally, the quadrupolar parameters are presented, which are commonly reported in NMR experiments.  
Tight settings are required for calculating the electric field gradient.


===Input parameters===
<pre>
* A larger {{TAG|ENCUT}} value than usual, generally much higher than the value given by ENMAX in the {{FILE|POTCAR}} file, e.g. 800 eV for C in diamond, rather than the standard 400 eV.
            NMR quadrupolar parameters
* A small {{TAG|EDIFF}} is required to provide converged chemical shifts, e.g. <code>1E-8</code> eV.
* Tighter precision, e.g. {{TAG|PREC}} = Accurate.
* Non-spherical contributions to the gradient of the density inside PAW spheres, i.e. {{TAG|LASPH}} = .TRUE. 
===Structure===
* The structure is extremely important, so using the experimental structure can improve results. Differences of 25 mÅ in structure can make a difference of 40 % to <math>V_{zz}</math> {{Cite|petrilli:prb:1998}}.


===PAW pseudopotentials===
  Cq : quadrupolar parameter    Cq=e*Q*V_zz/h
* The use of PAW potentials has a strong influence, GW {{FILE|POTCAR}} files often improve values.
  eta: asymmetry parameters    (V_yy - V_xx)/ V_zz
* Semi-core electrons can be important (check the {{TAG|POSCAR}} files with ''*_pv'' or ''*_sv'') as well as explicit inclusion of augmentation channels with <math>d</math>-projectors.
  Q  : nuclear electric quadrupole moment in mb (millibarn)
{{NB|mind|Several definitions of <math>C_q</math> are used in the NMR community, ensure that you are comparing between the same definitions in calculation and experiment.}}
----------------------------------------------------------------------
{{NB|important|For heavy nuclei inaccuracies are to be expected because of an incomplete treatment of relativistic effects.}}
  ion      Cq(MHz)      eta      Q (mb)
----------------------------------------------------------------------
    1        -            -        -                    
</pre>


== Related tags and articles ==
== Related tags and articles ==

Latest revision as of 13:58, 6 March 2025

LEFG = .TRUE. | .FALSE.
Default: LEFG = .FALSE. 

Description: The LEFG computes the electric field gradient (EFG) at positions of the atomic nuclei.


For LEFG=.TRUE., the electric field gradient tensors at the positions of the atomic nuclei are calculated using the method of Petrilli et al. [1].

The EFG tensors are symmetric. The principal components Vii and asymmetry parameter η are printed for each atom. Following convention the principal components Vii are ordered such that:

The asymmetry parameter is defined as . For so-called "quadrupolar nuclei", i.e., nuclei with nuclear spin I>1/2, NMR experiments can access Vzz and η.

To convert the Vzz values into the Cq often encountered in NMR literature, one has to specify the nuclear quadrupole moment by means of the QUAD_EFG-tag.

Mind: Several definitions of are used in the NMR community, ensure that you are comparing between the same definitions in calculation and experiment.
Important: For heavy nuclei inaccuracies are to be expected because of an incomplete treatment of relativistic effects.

Input

A typical INCAR file is given below:

 ENCUT = 400              
 ISMEAR = 0; SIGMA = 0.01 

 EDIFF = 1E-8             
 PREC = Accurate          
 LASPH = .TRUE.           

 LEFG = .TRUE.            
 QUAD_EFG = 0. -696. 20.44 0. 2.860  # Nuclear quadrupolar moments for Pb I N O D
Important: Make sure to replace the QUAD_EFG in the INCAR with the values for the isotopes in your system.

Output

The EFG is listed atom-wise after the SCF cycle has been completed. First, the full 3x3 tensor is printed:

  Electric field gradients (V/A^2)
 ---------------------------------------------------------------------
  ion       V_xx      V_yy      V_zz      V_xy      V_xz      V_yz
 ---------------------------------------------------------------------
    1        -         -         -         -         -         -       

The tensor is then diagonalized and reprinted:

  Electric field gradients after diagonalization (V/A^2)
  (convention: |V_zz| > |V_xx| > |V_yy|)
 ----------------------------------------------------------------------
  ion       V_xx      V_yy      V_zz     asymmetry (V_yy - V_xx)/ V_zz
 ----------------------------------------------------------------------
    1       -         -         -             -         

The corresponding eigenvectors are printed atom-wise. Finally, the quadrupolar parameters are presented, which are commonly reported in NMR experiments.

            NMR quadrupolar parameters

  Cq : quadrupolar parameter    Cq=e*Q*V_zz/h
  eta: asymmetry parameters     (V_yy - V_xx)/ V_zz
  Q  : nuclear electric quadrupole moment in mb (millibarn)
 ----------------------------------------------------------------------
  ion       Cq(MHz)       eta       Q (mb)
 ----------------------------------------------------------------------
    1        -             -         -                      

Related tags and articles

QUAD_EFG

Examples that use this tag

References