Template:Cite: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
 
(96 intermediate revisions by 10 users not shown)
Line 200: Line 200:
}}{{
}}{{
Reference|key=nose:jcp:1984|show={{{1}}}|
Reference|key=nose:jcp:1984|show={{{1}}}|
bib= S. Nosé, J. Chem. Phys. '''81''', 511 (1984).|
bib= S. Nosé, J. Chem. Phys. '''81''', 511 (1984).|
link=https://doi.org/10.1063/1.447334
link=https://doi.org/10.1063/1.447334
}}{{
}}{{
Reference|key=nose:ptp:1991|show={{{1}}}|
Reference|key=nose:ptp:1991|show={{{1}}}|
bib= S. Nosé, Prog. Theor. Phys. Suppl. '''103''', 1 (1991).|
bib= S. Nosé, Prog. Theor. Phys. Suppl. '''103''', 1 (1991).|
link=https://doi.org/10.1143/PTPS.103.1
link=https://doi.org/10.1143/PTPS.103.1
}}{{
}}{{
Line 538: Line 538:
bib=M. Grumet, P. Liu, M. Kaltak, J. Klimeš, and G. Kresse, Phys. Rev. B '''98''', 155143 (2018).|  
bib=M. Grumet, P. Liu, M. Kaltak, J. Klimeš, and G. Kresse, Phys. Rev. B '''98''', 155143 (2018).|  
link=https://doi.org/10.1103/PhysRevB.98.155143
link=https://doi.org/10.1103/PhysRevB.98.155143
}}{{
Reference|key=grumet:thesis:2017|show={{{1}}}|
bib=M. Grumet, Thesis: Self-consistent GW calculations for solids(2017).|
link=https://utheses.univie.ac.at/detail/43403#
}}{{
}}{{
Reference|key=ramberger:jcp:2019|show={{{1}}}|  
Reference|key=ramberger:jcp:2019|show={{{1}}}|  
Line 1,052: Line 1,056:
}}{{
}}{{
Reference|key=unzog:prb:2022|show={{{1}}}|
Reference|key=unzog:prb:2022|show={{{1}}}|
bib=M. Unzog, A. Tal, G. Kresse, Phys. Rev. B '''106''', 155133 (2022).|
bib=M. Unzog, A. Tal, G. Kresse, ''X-ray absorption using the projector augmented-wave method and the Bethe-Salpeter equation'', Phys. Rev. B '''106''', 155133 (2022).|
link=http://doi.org/10.1103/PhysRevB.106.155133
link=http://doi.org/10.1103/PhysRevB.106.155133
}}{{
}}{{
Line 1,300: Line 1,304:
}}{{
}}{{
Reference|key=kurth:ijqc:1999|show={{{1}}}|  
Reference|key=kurth:ijqc:1999|show={{{1}}}|  
bib=S. Kurth, J. P. Perdew, and P. Blaha, ''Molecular and solid-state tests of density functional approximations: LSD, GGAs, and meta-GGAs'', Int. J. Quantum Chem '''75''', 889 (1999).|  
bib=S. Kurth, J. P. Perdew, and P. Blaha, ''Molecular and solid-state tests of density functional approximations: LSD, GGAs, and meta-GGAs'', Int. J. Quantum Chem. '''75''', 889 (1999).|  
link=https://doi.org/10.1002/(SICI)1097-461X(1999)75:4/5%3C889::AID-QUA54%3E3.0.CO;2-8
link=https://doi.org/10.1002/(SICI)1097-461X(1999)75:4/5%3C889::AID-QUA54%3E3.0.CO;2-8
}}{{
}}{{
Line 1,346: Line 1,350:
bib=Ph. Ghosez, J.-P. Michenaud, and X. Gonze, ''Dynamical atomic charges: The case of AB⁢O3 compounds'', Phys. Rev. B '''58''', 6224 (1998).|  
bib=Ph. Ghosez, J.-P. Michenaud, and X. Gonze, ''Dynamical atomic charges: The case of AB⁢O3 compounds'', Phys. Rev. B '''58''', 6224 (1998).|  
link=https://doi.org/10.1103/PhysRevB.58.6224
link=https://doi.org/10.1103/PhysRevB.58.6224
}}{{
Reference|key=engel:prb:2020|show={{{1}}}|
bib=M. Engel, M. Marsman, C. Franchini, and G. Kresse, ''Electron-phonon interactions using the projector augmented-wave method and Wannier functions'', Phys. Rev. B '''101''', 184302 (2020).|
link=https://doi.org/10.1103/PhysRevB.101.184302
}}{{
}}{{
Reference|key=engel:prb:2022|show={{{1}}}|  
Reference|key=engel:prb:2022|show={{{1}}}|  
Line 1,390: Line 1,398:
bib= H. Hratchian, H. Schlegel, Theory and Application of Computational Chemistry, Chapter 10 - Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces (2005), p. 195-249|
bib= H. Hratchian, H. Schlegel, Theory and Application of Computational Chemistry, Chapter 10 - Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces (2005), p. 195-249|
link=https://www.sciencedirect.com/science/article/abs/pii/B9780444517197500536
link=https://www.sciencedirect.com/science/article/abs/pii/B9780444517197500536
}}{{ 
Reference|key=ryckaertt:jcp:1977|show={{{1}}}| 
bib=J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comp. Phys. 23, 327 (1977).| 
link=http://dx.doi.org/10.1016/0021-9991(77)90098-5
}}{{
Reference|key=rozzi:prb:2006|show={{{1}}}| 
bib=C. A. Rozzi, D. Varsano, A. Marini, E. K. Gross, A. J. Rubio, Phys. Rev. B 73(20), 20511 (2006).| 
link=https://doi.org/10.1103/PhysRevB.73.205119
}}{{
Reference|key=sohier:prb:2017|show={{{1}}}| 
bib=T. Sohier, M. Calandra, and F. Mauri, Phys. Rev. B 96, 75448 (2017).| 
link=https://doi.org/10.1103/PhysRevB.96.075448
}}{{
Reference|key=vijay:arxiv:2024|show={{{1}}}| 
bib=S. Vijay, M. Schlipf, H. Miranda, F. Karsai, M. Marsman, G. Kresse, Manuscript in preparation (2024).| 
link=https://doi.org
}}{{
Reference|key=ihm:jpcss:1979|show={{{1}}}| 
bib=J. Ihm, A. Zunger, M. L. Cohen, Journal of Physics C: Solid State Physics 12(21), 4409 (1979).| 
link=https://doi.org/10.1088/0022-3719/12/21/009
}}{{
Reference|key=ponce:jcp:2015|show={{{1}}}| 
bib=S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete, and X. Gonze, ''Temperature dependence of the electronic structure of semiconductors and insulators'', J. Chem. Phys. 143 (10), 102813 (2015).| 
link=https://doi.org/10.1063/1.4927081
}}{{
Reference|key=giustino:rmp:2017|show={{{1}}}| 
bib=F. Giustino, ''Electron-phonon interactions from first principles'', Rev. Mod. Phys. 89, 015003 (2017).| 
link=https://doi.org/10.1103/RevModPhys.89.015003
}}{{
Reference|key=tao:prl:2016|show={{{1}}}|
bib=J. Tao and Y. Mo, ''Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry'', Phys. Rev. Lett. '''117''', 073001 (2015).|
link=https://doi.org/10.1103/PhysRevLett.117.073001
}}{{
Reference|key=chaput:prb:2019|show={{{1}}}| 
bib=L. Chaput, A. Togo, and I. Tanaka, ''Finite-displacement computation of the electron-phonon interaction within the projector augmented-wave method'', Phys. Rev. B '''100''', 174304 (2019).|
link=https://doi.org/10.1103/PhysRevB.100.174304
}}{{
Reference|key=roussel:2023|show={{{1}}}| 
bib=M. Roussel, ''Foundations of Chemical Kinetics, Chapter 7 - Transition-state theory'', (2023), p. 195-249.|
link=https://doi.org/10.1088/978-0-7503-5321-2
}}{{
Reference|key=truhlar:csr:2017|show={{{1}}}| 
bib=J. Bao and D. Truhlar, ''Variational transition state theory: theoretical framework and recent developments'', Chem. Soc. Rev. '''46''', 7548 (2017).|
link=https://doi.org/10.1039/C7CS00602K
}}{{
Reference|key=truhlar:jpc:1996|show={{{1}}}| 
bib=D. Truhlar, B. Garrett, and S. Klippenstein, ''Current Status of Transition-State Theory'', J. Phys. Chem. '''100''', 12771 (1996).|
link=https://doi.org/10.1039/C7CS00602K
}}{{
Reference|key=henkelman:jcp:2012|show={{{1}}}| 
bib=D. Sheppard, P. Xiao, W. Chemelweski, D. Johnson, G. Henkelman, ''A generalized solid-state nudged elastic band method'', J. Chem. Phys. '''136''', 074103 (2012).|
link=https://doi.org/10.1063/1.3684549
}}{{
Reference|key=mcquarrie:2000|show={{{1}}}| 
bib=D. McQuarrie, ''Statistical Mechanics'', (2000).|
link=https://uscibooks.aip.org/books/statistical-mechanics/
}}{{
Reference|key=klein:2006|show={{{1}}}| 
bib=B. Ensing, M. De Vivo, Z. Liu, P. Moore, M. Klein, ''Metadynamics as a Tool for Exploring Free Energy Landscapes of Chemical Reactions'', Acc. Chem. Res. '''39''', 73 (2006)|
link=https://doi.org/10.1021/ar040198i
}}{{
Reference|key=tiwary:parrinello:2006|show={{{1}}}| 
bib=P. Tiwary, M. Parrinello, ''From Metadynamics to Dynamics'', Phys. Rev. Lett. '''111''', 230602 (2013).|
link=https://doi.org/10.1103/PhysRevLett.111.230602
}}{{
Reference|key=gesvandtnerova:rucco:bucko:2021|show={{{1}}}| 
bib=M. Gešvandtnerová, D. Rocca, T. Bučko, ''Methanol carbonylation over acid mordenite: Insights from ab initio molecular dynamics and machine learning thermodynamic perturbation theory'', J. Catal. '''396''', 166 (2021).|
link=https://doi.org/10.1016/j.jcat.2021.02.011
}}{{
Reference|key=lebeda:prl:2024|show={{{1}}}|
bib=T. Lebeda, T. Aschebrock, and S. Kümmel, ''Balancing the Contributions to the Gradient Expansion: Accurate Binding and Band Gaps with a Nonempirical Meta-GGA'', Phys. Rev. Lett. '''133''', 136402 (2024).|
link=https://doi.org/10.1103/PhysRevLett.133.136402
}}{{
Reference|key=aschebrock:prr:2019|show={{{1}}}|
bib=T. Aschebrock and S. Kümmel, ''Ultranonlocality and accurate band gaps from a meta-generalized gradient approximation'', Phys. Rev. Res. '''1''', 033082 (2019)|
link=https://doi.org/10.1103/PhysRevResearch.1.033082
}}{{
Reference|key=cai:jpcc:2024|show={{{1}}}|
bib=Y. Cai, R. Michiels, F. De Luca, E. Neyts, X. Tu, A. Bogaerts, and N. Gerrits, J. Phys. Chem. C '''128''', 8611 (2024).|
link=https://doi.org/10.1021/acs.jpcc.4c01110
}}{{
Reference|key=smeets:jpca:2019|show={{{1}}}|
bib=E. W. S. Smeets, J. Voos, and G.-J. Kroes, J. Phys. Chem. A '''123''', 5395 (2019).|
link=http://doi.org/10.1021/acs.jpca.9b02914
}}{{
Reference|key=macdonald:jpc:1979|show={{{1}}}|
bib=A. H. MacDonald and S. H. Vosko, ''A relativistic density functional formalism'', J. Phys. C '''12''', 2977 (1979).|
link=https://.doi.org/10.1088/0022-3719/12/15/007
}}{{
Reference|key=sharma:jctc:2018|show={{{1}}}|
bib=Sharma, S., Gross, E. K. U., Sanna, A., and Dewhurst, J. K., ''Source-free exchange-correlation magnetic fields in density functional theory'', Journal of chemical theory and computation, '''14'''(3), 1247-1253 (2018).|
link=https://.doi.org/10.1021/acs.jctc.7b01049
}}{{
Reference|key=bilbao.crystal.server|show={{{1}}}|
bib=MAGNDATA, Bilbao crystallographic server|
link=https://www.cryst.ehu.es/magndata/search.php?show_db=1
}}{{
Reference|key=guy:arxiv:2024|show={{{1}}}|
bib=Moore, G. C., Horton, M. K., Kaplan, A. D., Griffin, S. M., Persson, K. A. ''Realistic non-collinear ground states of solids with source-free exchange correlation functional'', arXiv:2310.00114v2 (2024).|
link=https://arxiv.org/abs/2310.00114
}}{{
Reference|key=guy:patch:2024|show={{{1}}}|
bib=Source free Bxc field patch by Moore et al.|
link=https://github.com/guycmoore/source_free_Bxc_VASP
}}{{
Reference|key=rayson:prb:2008|show={{{1}}}|
bib=Rayson, M. J., and Briddon, P. R., ''First principles method for the calculation of zero-field splitting tensors in periodic systems'', Phys. Rev. B, '''77''', 035119 (2008).|
link=https://doi.org/10.1103/PhysRevB.77.035119
}}{{
Reference|key=szasz:prb:2013|show={{{1}}}|
bib=K. Szasz, T. Hornos, M. Marsman, and A. Gali, ''Hyperfine coupling of point defects in semiconductors by hybrid density functional calculations: The role of core spin polarization'', Phys. Rev. B, '''88''', 075202 (2013).|
link=https://doi.org/10.1103/PhysRevB.88.075202
}}{{
Reference|key=bloechl:prb:2000|show={{{1}}}|
bib=P. Bloechl, ''First-principles calculations of defects in oxygen-deficient silica exposed to hydrogen'', Phys. Rev. B, '''62''', 6158 (2000).|
link=https://doi.org/10.1103/PhysRevB.62.6158
}}{{
Reference|key=yazyev:prb:2005|show={{{1}}}|
bib=O. V. Yazyev, I. Tavernelli, L. Helm, and U. R. Roethlisberger, ''Core spin-polarization correction in pseudopotential-based electronic structure calculations'', Phys. Rev. B '''71''', 115110 (2006).|
link=https://doi.org/10.1103/PhysRevB.71.115110
}}{{
Reference|key=altman:prl:2024|show={{{1}}}|
bib=Altman, A. R. and Kundu, S. and da Jornada, F. H., ''Mixed Stochastic-Deterministic Approach for Many-Body Perturbation Theory Calculations'', Phys. Rev. Lett. '''132''', 086401 (2024).|
link=https://doi.org/10.1103/PhysRevLett.132.086401
}}{{
Reference|key=hetenyi:jcp:2004|show={{{1}}}|
bib=B. Hetényi, F. De Angelis, P. Giannozzi, and R. Car, ''Calculation of near-edge x-ray-absorption fine structure at finite temperatures: spectral signatures of hydrogen bond breaking in liquid water '',  J. Chem. Phys. '''120''', 8632 (2004).|
link=https://doi.org/10.1063/1.1703526
}}{{
Reference|key=Prendergasst:prl:2006|show={{{1}}}|
bib=D. Prendergasst and G. Galli, ''X-Ray Absorption Spectra of Water from First Principles Calculations'',  Phys. Rev. Lett. '''96''', 215502 (2006).|
link=https://doi.org/10.1103/PhysRevLett.96.215502
}}{{
Reference|key=meng:prm:2024|show={{{1}}}|
bib=F. Meng, B. Maurer, F. Peschel, S. Selcuk, M. Hybertsen, X. Qu, C. Vorwerk, C. Draxl, J. Vinson, and D. Lu, ''Multicode benchmark on simulated Ti K-edge x-ray absorption spectra of Ti-O compounds'' , Phys. Rev. Materials '''8''', 013801 (2024)|
link=http://dx.doi.org/10.1103/PhysRevMaterials.8.013801
}}{{
Reference|key=liang:prl:2017|show={{{1}}}|
bib=Y. Liang, J. Vinson, S. Pemmaraju, W. S. Drisdell, E. L. Shirley, and D. Prendergast, ''Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory'', Phys. Rev. Lett. '''118''', 096402 (2017)|
link=http://dx.doi.org/10.1103/PhysRevLett.118.096402
}}{{
Reference|key=kotliar:rmp:2006|show={{{1}}}|
bib=G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti, ''Electronic structure calculations with dynamical mean-field theory'', Rev. Mod. Phys. '''78''', 865 (2006)|
link=https://link.aps.org/doi/10.1103/RevModPhys.78.865
}}{{
Reference|key=salpeter:pr:1951|show={{{1}}}|
bib=E. E. Salpeter and H. A. Bethe, ''A Relativistic Equation for Bound-State Problems'', Phys. Rev. '''84''', 1232-1242 (1951)|
link=http://dx.doi.org/10.1103/PhysRev.84.1232
}}{{
Reference|key=hanke:prl:1979|show={{{1}}}|
bib=W. Hanke and L. J. Sham, ''Many-Particle Effects in the Optical Excitations of a Semiconductor'', Phys. Rev. Lett. '''43''', 387-390 (1979)|
link=http://dx.doi.org/10.1103/PhysRevLett.43.387
}}{{
Reference|key=harris:pac:2008|show={{{1}}}|
bib=R. Harris, E. Becker, S. Cabral de Menezes, P. Granger, R. Hoffman, and K. Zilm, ''Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008)'', Pure Appl. Chem. '''80''', 59-84 (2008)|
link=https://doi.org/10.1351/pac200880010059
}}{{
Reference|key=nqr:web|show={{{1}}}|
bib= Nuclear quadrupole resonance, www.wikipedia.org (2025)|
link=https://en.wikipedia.org/wiki/Nuclear_quadrupole_resonance
}}{{
Reference|key=weil:bolton:2007|show={{{1}}}| 
bib=J. Weil and J. Bolton, ''Electron Paramagnetic Resonance: Elementary Theory and Practical Applications'', (2007).|
link=https://doi.org/10.1002/0470084987
}}{{
Reference|key=laws:bitter:jerschow:2002|show={{{1}}}| 
bib=D. Laws, H.-M. Bitter, and A. Jerschow, ''Solid-State NMR Spectroscopic Methods in Chemistry'', (2002).|
link=https://doi.org/10.1002/1521-3773(20020902)41:17%3C3096::AID-ANIE3096%3E3.0.CO;2-X
}}{{
Reference|key=reif:ashbrook:emsley:hong:2021|show={{{1}}}| 
bib=B. Reif, S. Ashbrook, L. Emsley, and M. Hong, ''Solid-state NMR spectroscopy'', (2021).|
link=https://doi.org/10.1038/s43586-020-00002-1
}}{{
Reference|key=neumann:mp:1996|show={{{1}}}|
bib=R. Neumann, R. H. Nobes, and N. C. Handy, ''Exchange functionals and potentials'', Mol. Phys. '''87''', 1 (1996).|
link=https://doi.org/10.1080/00268979600100011
}}{{
Reference|key=petrilli:prb:1998|show={{{1}}}|
bib=H. M. Petrilli, P. E. Blöchl, P. Blaha, and K. Schwarz, ''Electric-field-gradient calculations using the projector augmented wave method'', Phys. Rev. B '''57''', 14690 (1998).|
link=https://doi.org/10.1103/PhysRevB.57.14690
}}{{
Reference|key=pyykko:molphys:2008|show={{{1}}}|
bib=P. Pyykkö, ''Year-2008 nuclear quadrupole moments'', Mol. Phys. '''106''', 1965-1974 (2008).|
link=https://doi.org/10.1080/00268970802018367
}}{{
Reference|key=pyykko:molphys:2017|show={{{1}}}|
bib=P. Pyykkö, ''Year-2017 nuclear quadrupole moments'', Mol. Phys. '''116''', 1328-1338 (2018).|
link=https://doi.org/10.1080/00268976.2018.1426131
}}{{
Reference|key=pickard:prb:2001|show={{{1}}}|
bib=C. J. Pickard and F. Mauri, ''All-electron magnetic response with pseudopotentials: NMR chemical shifts'', Phys. Rev. B '''63''', 245101 (2001).|
link=https://doi.org/10.1103/PhysRevB.63.245101
}}{{
Reference|key=yates:prb:2007|show={{{1}}}|
bib=J. R. Yates, C. J. Pickard, and F. Mauri, ''Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials'', Phys. Rev. B '''76''', 024401 (2007).|
link=https://doi.org/10.1103/PhysRevB.76.024401
}}{{
Reference|key=mason:ssn:1993|show={{{1}}}|
bib=J. Mason, ''Conventions for the reporting of nuclear magnetic shielding (or shift) tensors suggested by participants in the NATO ARW on NMR shielding constants at the University of Maryland, College Park, July 1992'', Solid State Nucl. Magn. Reson. '''2''', 285 (1993).|
link=https://doi.org/10.1016/0926-2040(93)90010-K
}}{{
Reference|key=gregor:jcp:1999|show={{{1}}}|
bib=T. Gregor, F. Mauri, and R. Car, ''A comparison of methods for the calculation of NMR chemical shifts'', J. Chem. Phys. '''111''', 1815 (1999).|
link=https://doi.org/10.1063/1.479451
}}{{
Reference|key=dewijs:jcp:2013|show={{{1}}}|
bib=F. Vasconcelos, G.A. de Wijs, R. W. A. Havenith, M. Marsman, and G. Kresse, ''Finite-field implementation of NMR chemical shieldings for molecules: Direct and converse gauge-including projector-augmented-wave methods'', J. Chem. Phys. '''139''', 014109 (2013).|
link=https://doi.org/10.1063/1.4810799
}}{{
Reference|key=dewijs:jcp:2021|show={{{1}}}|
bib=G.A. de Wijs, G. Kresse, R. W. A. Havenith, and M. Marsman, ''Comparing GIPAW with numerically exact chemical shieldings: The role of two-center contributions to the induced current'', J. Chem. Phys. '''155''', 234101 (2021).|
link=https://doi.org/10.1063/5.0069637
}}{{
Reference|key=jenssen:pccp:2016|show={{{1}}}|
bib=S.R. Jensen, T. Flå, D. Jonsson, R.S. Monstad, K. Ruud, and L. Frediani, ''Magnetic properties with multiwavelets and DFT: the complete basis set limit achieved'', Phys. Chem. Chem. Phys. '''18''', 21145 (2016).|
link=https://doi.org/10.1039/C6CP01294A
}}{{
Reference|key=dewijs:laskowski:jcp:2017|show={{{1}}}|
bib=G. A. de Wijs, R. Laskowski, P. Blaha, R. W. A. Havenith, G. Kresse, and M. Marsman, ''NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations'', J. Chem. Phys. '''146''', 064115 (2017).|
link=https://doi.org/10.1063/1.4975122
}}{{
Reference|key=avezac:prb:2007|show={{{1}}}|
bib=M. d'Avezac, N. Marzari, and F. Mauri, ''Spin and orbital magnetic response in metals: Susceptibility and NMR shifts'', Phys. Rev. B '''76''', 165122 (2007).|
link=https://doi.org/10.1103/PhysRevB.76.165122
}}{{
Reference|key=dewijs:havenith:jcp:2021|show={{{1}}}|
bib=G.A. de Wijs, G. Kresse, R. W. A. Havenith, and M. Marsman, ''Spin and orbital magnetic response in metals: Susceptibility and NMR shifts'', J. Chem. Phys. '''155''', 234101 (2021).|
link=https://doi.org/10.1063/5.0069637
}}{{
Reference|key=capelle:bjp:2006|show={{{1}}}|
bib=K. Capelle, ''A Bird’s-Eye View of Density-Functional Theory'', Braz. J. Phys. '''36''', 1318 (2006).|
link=https://doi.org/10.1590/S0103-97332006000700035
}}{{
Reference|key=kuemmel:rmp:2008|show={{{1}}}|
bib=S. Kümmel and L. Kronik, ''Orbital-dependent density functionals: Theory and applications'', Rev. Mod. Phys. '''80''', 3 (2008).|
link=http://doi.org/10.1103/RevModPhys.80.3
}}{{
Reference|key=dellasala:jcp:2001|show={{{1}}}|
bib=F. Della Sala and A. Görling, ''Efficient localized Hartree–Fock methods as effective exact-exchange Kohn–Sham methods for molecules'', J. Chem. Phys. '''115''', 5718 (2001).|
link=http://doi.org/10.1063/1.1398093
}}{{
Reference|key=krieger:pra:1992|show={{{1}}}|
bib=J. B. Krieger, Y. Li, and G. J. Iafrate, ''Construction and application of an accurate local spin-polarized Kohn-Sham potential with integer discontinuity: Exchange-only theory'', Phys. Rev. A '''45''', 101 (1992).|
link=https://doi.org/10.1103/PhysRevA.45.101
}}{{
Reference|key=Sharp:pr:1992|show={{{1}}}|
bib=R. T. Sharp and G. K. Horton, ''A Variational Approach to the Unipotential Many-Electron Problem'', Phys. Rev. '''90''', 317 (1953).|
link=https://doi.org/10.1103/PhysRev.90.317
}}{{
Reference|key=ase|show={{{1}}}|
bib=https://wiki.fysik.dtu.dk/ase/ (2025).|
link=https://wiki.fysik.dtu.dk/ase/
}}{{
Reference|key=hermann:cr:2017|show={{{1}}}|
bib=J. Hermann, R. A. DiStasio Jr., and A. Tkatchenko, ''First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications'', Chem. Rev. '''117''', 4714 (2017).|
link=https://doi.org/10.1021/acs.chemrev.6b00446
}}{{
Reference|key=grimme:cr:2016|show={{{1}}}|
bib=S. Grimme, A. hansen, J. G. Brandenburg, and C. Bannwarth, ''Dispersion-Corrected Mean-Field Electronic Structure Methods'', Chem. Rev. '''116''', 5105 (2016).|
link=https://doi.org/10.1021/acs.chemrev.5b00533
}}{{
Reference|key=karolak:2010|show={{{1}}}|
bib=M. Karolak, G. Ulm, T. Wehling, V. Mazurenko, A. Poteryaev, and A. Lichtenstein, ''Double counting in LDA+DMFT—The example of NiO'', J. Electron Spectros. Relat. Phenomena '''118''', 11 (2010).|
link=https://doi.org/10.1016/j.elspec.2010.05.021
}}{{
Reference|key=mardirossian:mp:2017|show={{{1}}}|
bib=N. Mardirossian and M. Head-Gordon, ''Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals'', Mol. Phys. '''115''', 2315 (2017).|
link=https://doi.org/10.1080/00268976.2017.1333644
}}{{
Reference|key=dellasala:ijqc:2016|show={{{1}}}|
bib=F. Della Sala, E. Fabiano, and L. A. Constantin, ''Kinetic-energy-density dependent semilocal exchange-correlation functionals'', Int. J. Quantum Chem. '''116''', 1641 (2016).|
link=https://doi.org/10.1002/qua.25224
}}
}}

Latest revision as of 08:34, 28 February 2025

This template is similar to how LaTeX manages citations, you have a key and then a text that is included. The template translates this to the mediawiki format. Usage {{cite|key}}.

Mind: Add new citations to the end of this list. Be wary of the whitespace here as it will be introduced to the other document when you include it via the template. A good test is that the preview page should be completely empty and not show any empty lines.