LCHIMAG: Difference between revisions

From VASP Wiki
No edit summary
 
(81 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{TAGDEF|LCHIMAG|.TRUE. {{!}} .FALSE. | .FALSE.}}
{{TAGDEF|LCHIMAG|.TRUE. {{!}} .FALSE. | .FALSE.}}


Description: calculate the chemical shifts by means of linear response.
Description: Calculate the chemical shifts and magnetic susceptibility within linear response theory.
----
----
For {{TAG|LCHIMAG}}=.TRUE., VASP calculates the chemical shift tensors by means of linear response.
For {{TAGO|LCHIMAG|True}}, the chemical shift tensors and magnetic susceptibility is computed. The implementation{{Cite|dewijs:laskowski:jcp:2017}} is based on linear response theory using the gauge-invariant PAW method of Yates, Pickard, and Mauri {{Cite|pickard:prb:2001}}{{Cite|yates:prb:2007}}, that is an extension to the standard [[PAW method]] to account for the effects of a vector gauge field <math>A</math>. The NMR response currents are computed and the induced B field is calculated based on the Biot-Savart law.
 
See also {{TAG|WRT_NMRCUR}} to write the currents and {{TAG|NUCIND}} to compute the nuclear-independent chemical shielding.
{{NB|warning|This method only works for non-metallic systems, i.e., that have a finite bandgap.}}
 
== Definitions ==
 
The chemical shielding tensor is defined as:
:<math>
\sigma_{ij}(\mathbf{R}) = - \frac{ \partial B^{\mathrm{in}}_i(\mathbf{R})}{ \partial B^{\mathrm{ext}}_j}
</math>
 
Here <math>\mathbf{R}</math> denotes the atomic nuclear site, <math>i</math> and <math>j</math> denote Cartesian indices, <math>\mathbf{B}^{\mathrm{ext}}</math> an applied DC external magnetic field and <math>\mathbf{B}^{\mathrm{in}}(\mathbf{R})</math> the induced magnetic field at the nucleus.
 
NMR experiments yield information on the shielding relative to a reference compound:
:<math>
\delta_{ij}(\mathbf{R}) = \sigma_{ij}^{\mathrm{ref}} - \sigma_{ij}(\mathbf{R})
</math>
Here, <math>\sigma_{ij}^{\mathrm{ref}}</math> is the isotropic shielding of the nucleus in the reference compound. <math>\delta_{ij}(\mathbf{R})</math> is the chemical shift tensor. In order to compare numerical results with the experimental data, one usually considers a series of compounds and references that to the experimental series.
{{NB|mind|If VASP reports the chemical shift ({{TAGO|LNMRSHIELD|False}}) it is simply the negative shielding, <math>\delta_{ij}(\mathbf{R})= - \sigma_{ij}(\mathbf{R})</math>. The reference must still be added in the postprocessing to analyze the data.}}
 
VASP calculates chemical "shifts" for non-metallic crystalline systems using the linear response method of Yates, Pickard, and Mauri {{Cite|pickard:prb:2001}}{{Cite|yates:prb:2007}}.
 
The isotropic chemical "shift" <math>\sigma_{iso}</math>, span <math>\Omega</math>, and skew <math>\kappa</math> are also reported, according to the following  Herzfeld-Berger convention {{Cite|mason:ssn:1993}}:
 
:<math>
\sigma_{iso} = (\sigma_{11} + \sigma_{22} + \sigma_{33})/3
</math>
 
:<math>
\Omega = \sigma_{33} - \sigma_{11}
</math>


The chemical shift tensor is defined as:
:<math>
:<math>
\sigma_{\mathbf{R}ij} = \frac{ \partial B^{\mathrm{ind}}(\mathbf{R})_i}{ \partial B^{\mathrm{ext}}_j}
\kappa = 3(\sigma_{iso} - \sigma_{22})/\Omega.
</math>
</math>


Here '''R''' denotes the atomic nuclear site, ''i'' and ''j'' denote cartesian indices, ''B''<sup>ext</sup> an applied DC external magnetic field and ''B''<sup>ind</sup>('''R''') the induced magnetic field at the nucleus.
The orbital magnetic susceptibility <math>\chi</math> is calculated according to a finite-differences approach:
NMR experiments yield information on the symmetric part of the tensor.
 
VASP can calculate chemical shifts for crystalline systems using the linear response method of Yates, Pickard and Mauri.<ref name="pickard:prb:01"/><ref name="yates:prb:07"/>
:<math>
\chi_{\textrm{bare}} = \lim_{q\to0} \frac{F(q) 2F(q) + F(-q)}{q^2}
</math>
 
where <math>F_{ij}(q)=(2-\delta_{ij})Q_{ij}(q)</math>.
 
''Q<sub>ij</sub>'' is approximated in two ways. The so-called ''pGv''-approximation is used by default {{Cite|yates:prb:2007}}, where ''p'' is momentum, ''v'' is velocity, and ''G'' is a Green's function. An alternative approach, the ''vGv''-approximation is also used to calculate an alternative susceptibility since VASP 6.4.0 {{Cite|avezac:prb:2007}}. ''Q'' is defined for the ''pGv''-approximation as:
 
:<math>
Q(q) = - \frac{1}{c^2 N_k V_c} \sum_{i=x,y,z} \sum_{o,\textbf{k}} \textrm{Re}[\langle \bar{u}^{(0)}_{o,\textbf{k}} | \hat{\textbf{u}}_i \times (-i \nabla + \textbf{k})  \times \mathcal{G}_{\textbf{k} + \textbf{q}_i}(\epsilon_{o,\textbf{k}}) \hat{\textbf{u}}_i \times \textbf{v}_{\textbf{k} + \textbf{q}_i, \textbf{k}}(\epsilon_{o,\textbf{k}}) | \bar{u}^{(0)}_{o,\textbf{k}} \rangle]
</math>
 
and for the ''vGv''-approximation as:
 
:<math>
Q(q) = - \frac{1}{c^2 N_k V_c} \sum_{i=x,y,z} \sum_{o,\textbf{k}} \textrm{Re}[\langle \bar{u}^{(0)}_{o,\textbf{k}} | \hat{\textbf{u}}_i \times \textbf{v}_{\textbf{k} + \textbf{q}_i, \textbf{k}}(\epsilon_{o,\textbf{k}})  \times \mathcal{G}_{\textbf{k} + \textbf{q}_i}(\epsilon_{o,\textbf{k}}) \hat{\textbf{u}}_i \times \textbf{v}_{\textbf{k} + \textbf{q}_i, \textbf{k}}(\epsilon_{o,\textbf{k}}) | \bar{u}^{(0)}_{o,\textbf{k}} \rangle]
</math>.
 
== Output ==
The isotropic chemical shieldings are printed towards the end of the {{FILE|OUTCAR}} file, after the self-consistent calculation has finished. The chemical shift tensors both before and after space group symmetrization. These are the absolute tensors for the infinite lattice, excluding core contributions. They can be searched for under the <code>UNSYMMETRIZED TENSORS</code> and <code>SYMMETRIZED TENSORS</code> after <code>Absolute Chemical Shift tensors</code>. Additionally, the magnetic susceptibility is printed shortly after and found under <code>ORBITAL MAGNETIC SUSCEPTIBILITY</code>.
 
===Magnetic susceptibility===
The magnetic susceptibility is found at the start of the <code>ORBITAL MAGNETIC SUSCEPTIBILITY, excluding core contribution</code>. The magnetic susceptibility is split into that obtained by the ''pGv''-approximation and obtained by the ''vGv''-approximation:


A typical {{FILE|INCAR}} could look like this:
<pre>
<pre>
PREC = A              # nice
-------------------------------------------------------------
ENCUT = 600.0          # typically higher cutoffs than usual are needed
  ORBITAL MAGNETIC SUSCEPTIBILITY, excluding core contribution
EDIFF = 1E-8          # you need much smaller EDIFFs than normal.
-------------------------------------------------------------
ISMEAR = 0; SIGMA= 0.1 # no fancy smearings, SIGMA sufficiently small
  Approximate magnetic susceptibility, pGv (10^-6 cm^3/mole)
LREAL = A              # helps for speed for large systems, not necessary per se
    1        -70.928534        -0.000000          0.000000
    2        -0.000000        -70.928534          0.000000
    3          0.000000          0.000000        -70.928534
-------------------------------------------------------------
  Approximate magnetic susceptibility, vGv (10^-6 cm^3/mole)
    1       -63.412095        -0.000000          0.000000
    2        -0.000000        -63.412095          0.000000
    3          0.000000          0.000000        -63.412095


LCHIMAG = .TRUE.       # to switch on linear response for chemical shifts
        principal value                      axis
DQ = 0.001            # often the default is sufficient
      (10^-6 cm^3/mole)          x,          y,          z
ICHIBARE = 1          # often the default is sufficient
      --------------------------------------------------------
LNMR_SYM_RED = .TRUE. # be on the safe side
              -63.412095      0.1652    -0.9863      0.0000
NSLPLINE = .TRUE.      # only needed if LREAL is NOT set.
              -63.412095    -0.9863    -0.1652      0.0000
              -63.412095      0.0000     0.0000      1.0000
-------------------------------------------------------------
</pre>
</pre>


The first block of tags in the {{FILE|INCAR}} above expresses the fact that the calculations of chemical shifts by means of linear response often require a high accuracy ({{TAG|PREC}}=A, {{TAG|EDIFF}}&le;1E-8, high {{TAG|ENCUT}}).
===Chemical shielding===
To obtain the full absolute tensors requires adding both the <math>\mathbf{G=0}</math> contribution (cf. <code>G=0 CONTRIBUTION TO CHEMICAL SHIFT</code>) and the contributions due to the core electrons. The latter consists of contributions for each chemical species separately (depending on {{TAG|POTCAR}}) and a global <math>\mathbf{G=0}</math> susceptibility contribution.


The chemical shifts are calculated from the orbital magnetic response under the assumption that the system is an insulator. It makes no sense to use smearing schemes intended for metals, indeed, doing so can generate nonsense. It is safe to use {{TAG|ISMEAR}}=0 and make {{TAG|SIGMA}} so small that states have no fractional occupancies.
The reference shift experienced by the core is given first:


The seçond block of tags switches on the calculation of the chemical shifts ({{TAG|LCHIMAG}}=.TRUE.), and controls several aspects of the finite difference ''k''-space derivatives (Eqs. 38, 40, and 47 in the work of Yates ''et al.''<ref name="yates:prb:07"/>):
<pre>
  Core NMR properties


*{{TAG|DQ}} is the step size for the finite difference ''k''-space derivative. Typical values are in the range [0.001 - 0.003]. The default is often sufficient.
  typ  El  Core shift (ppm)
----------------------------
    1  C    -200.5098801
----------------------------


*{{TAG|ICHIBARE}} is the order of the finite difference stencil used to calculate the magnetic susceptibility (second order derivative in Eq. 47 of Yates ''et al.''<ref name="yates:prb:07"/>). {{TAG|ICHIBARE}} may be set to 1, 2, or 3. Often the default ({{TAG|ICHIBARE}}=1) is sufficient. A higher {{TAG|ICHIBARE}} results in a substantial increase of the computational load.
  Core contribution to magnetic susceptibility:    -0.31  10^-6 cm^3/mole
--------------------------------------------------------------------------
</pre>
{{NB|important|The isotropic chemical shift <math>\delta_{\mathrm{iso}}\mathrm{[VASP]}</math> (ISO_SHIFT) is the negative of the isotropic shielding. To make it a ''real shift'' one should add the reference shielding.}}


*For {{TAG|NLSPLINE}}=.TRUE., the PAW projectors in reciprocal space ({{TAG|LREAL}}=.FALSE.) are set up using a spline interpolation so that they are ''k''-differentiable. This only slightly affects the chemical shifts themselves, but can have impact on the susceptibility contribution (the aforementioned Eq. 47). It is advised to set {{TAG|NLSPLINE}}=.TRUE., but only in case of calculation of chemical shift. As this option also gives slightly different total energies, it is advised to use the default {{TAG|NLSPLINE}}=.FALSE. for compatibility in all other calculations. Real space projectors are ''k''-differentiable by construction.
Next, the tensor is processed and its chemical shielding anisotropy (CSA) characteristics are printed in the {{FILE|OUTCAR}}. The tensor is symmetrized (<math>\sigma_{ij} = \sigma_{ji}</math> is enforced) and diagonalized. From the three diagonal values the isotropic chemical "shift" <math>\delta_{\mathrm{iso}}\mathrm{[VASP]}</math>, span <math>\Omega</math>, and skew <math>\kappa</math> are calculated and printed see Ref. {{Cite|mason:ssn:1993}} for unambiguous definitions. Note that <math>\kappa</math> is ill-defined if <math>\Omega = 0</math>. Units are ppm, except for the skew. A typical output is given below:


*The star on which the ''k''-space derivative is calculated is oriented along the cartesian directions in ''k''-space. If the symmetry operations in ''k''-space do not map this star onto itself, erroneous results can be obtained. To have VASP check for such operations, set {{TAG|LNMR_SYM_RED}}=.TRUE., and such operations will be discarded, resulting in a larger IBZ. In case of any doubt set {{TAG|LNMR_SYM_RED}}=.TRUE. Beware: It matters how the real space lattice vectors are set up relative to the cartesian coordinates in {{FILE|POSCAR}}. It determines the orientation of the ''k''-space star and hence can affect the efficiency via the number of ''k''-points in the IBZ.
<pre>                                                                                                         
  ---------------------------------------------------------------------------------
    CSA tensor (J. Mason, Solid State Nucl. Magn. Reson. 2, 285 (1993))
  ---------------------------------------------------------------------------------
              EXCLUDING G=0 CONTRIBUTION            INCLUDING G=0 CONTRIBUTION
          -----------------------------------  -----------------------------------
    ATOM    ISO_SHIFT        SPAN        SKEW    ISO_SHIFT        SPAN        SKEW
  ---------------------------------------------------------------------------------
    (absolute, valence only)
      1    4598.8125      0.0000      0.0000    4589.9696      0.0000      0.0000
      2    291.5486      0.0000      0.0000      282.7058      0.0000      0.0000
      3    736.5979    344.8803      1.0000      727.7550    344.8803      1.0000
      4    736.5979    344.8803      1.0000      727.7550    344.8803      1.0000
      5    736.5979    344.8803      1.0000      727.7550    344.8803      1.0000
  ---------------------------------------------------------------------------------
    (absolute, valence and core)
      1  -6536.1417      0.0000      0.0000    -6547.9848      0.0000      0.0000
      2  -5706.3864      0.0000      0.0000    -5718.2296      0.0000      0.0000
      3  -2369.4015    344.8803      1.0000    -2381.2446    344.8803      1.0000
      4  -2369.4015    344.8803      1.0000    -2381.2446    344.8803      1.0000
      5  -2369.4015    344.8803      1.0000    -2381.2446    344.8803      1.0000
  ---------------------------------------------------------------------------------
    IF SPAN.EQ.0, THEN SKEW IS ILL-DEFINED
  ---------------------------------------------------------------------------------
</pre>


<ref name="pickard:prb:01"/><ref name="yates:prb:07"/><ref name="mason:ssn:93"/><ref name="gregor:jcp:99"/>
The isotropic chemical shielding for each atom, excluding and including G=0 contributions, as well as the span and skew (descriptions of asymmetry), follow. Finally, core contributions are taken into account for the <code>ISO_SHIFT</code>, <code>SPAN</code>, and <code>SKEW</code>.
{{NB|important|
*The columns excluding the <math>\mathbf{G=0}</math> contribution are useful for supercell calculations on molecules.
*The columns including the <math>\mathbf{G=0}</math> contribution are for crystals.
*The upper block gives the shielding due to only the electrons included in the SCF calculation.
*The lower block has the contributions due to the frozen PAW cores added. These core contributions are rigid  {{Cite|gregor:jcp:1999}}. They depend on {{FILE|POTCAR}} and are isotropic, i.e. affect neither SPAN nor SKEW.}}
<!--
As of VASP.? on OUTCAR also a summary of the tensors per ion is printed. This is done both excluding and including the '''G'''=0 contribution.
The summary starts with, for each ion, its number, the isotropic shielding, the shielding tensor and the symmetrized shielding tensor.
Next the principal components and the principal axes are printed (from the symmetrized tensor).
They are ordered following Mason {{Cite|mason:ssn:1993}}, i.e. σ<sub>11</sub> < σ<sub>22</sub> < σ<sub>33</sub>.
Finally a line is printed with (again) the isotropic shielding σ<sub>iso</sub>, the span Ω & skew κ (Herzfeld-Berger, Mason sections 2.2 and 2.3) and the shielding anisotropy Δ & asymmetry η (Haeberlen, Mason section 2.6).
<pre>
---------------------------------------------------------------------------------------
  CSA tensor (J. Mason, Solid State Nucl. Magn. Reson. 2, 285 (1993))
  for chemical shielding  (including the isotropic core contribution)


== Related Tags and Sections ==
  BDIR labels direction of applied magnetic field (i.e. B0)
  For BDIR==1, B0 along x-axis, etc.
  Induced field listed along cartesian directions for each BDIR
---------------------------------------------------------------------------------------
                EXCLUDING G=0 CONTRIBUTION            INCLUDING G=0 CONTRIBUTION
            ------------------------------------  ------------------------------------
  ion  BDIR            X          Y          Z              X          Y          Z
          (  iso_shield        span        skew) (  iso_shield        span        skew)
---------------------------------------------------------------------------------------
    1    1    142.5256    -0.0000      0.0000      229.8645    -0.0000      0.0000
          2      -0.0000    142.5256      0.0000        -0.0000    229.8645    -0.0000
          3      -0.0000      0.0000    142.5256        -0.0000      0.0000    229.8645
          (    142.5256      0.0000      0.0000) (    229.8645      0.0000      0.0000)
 
    2    1    142.5256    -0.0000      0.0000      229.8645    -0.0000      0.0000
          2      -0.0000    142.5256      0.0000        -0.0000    229.8645    -0.0000
          3      -0.0000      0.0000    142.5256        -0.0000      0.0000    229.8645
          (    142.5256      0.0000      0.0000) (    229.8645      0.0000      0.0000)
---------------------------------------------------------------------------------------
  IF SPAN.EQ.0, THEN SKEW IS ILL-DEFINED
---------------------------------------------------------------------------------------
</pre>
-->
 
== Related tags and articles ==
{{TAG|DQ}},
{{TAG|DQ}},
{{TAG|ICHIBARE}},
{{TAG|ICHIBARE}},
{{TAG|LNMR_SYM_RED}},
{{TAG|LNMR_SYM_RED}},
{{TAG|NLSPLINE}}
{{TAG|NLSPLINE}},
{{TAG|LLRAUG}},
{{TAG|LBONE}},
{{TAG|LVGVCALC}},
{{TAG|LVGVAPPL}}
 
{{sc|LCHIMAG|Examples|Examples that use this tag}}


== References ==
== References ==
<references>
<ref name="pickard:prb:01">[http://link.aps.org/doi/10.1103/PhysRevB.63.245101 C. J. Pickard, F. Mauri, Phys. Rev. B 63, 245101 (2001).]</ref>
<ref name="yates:prb:07">[http://link.aps.org/doi/10.1103/PhysRevB.76.024401 J. R. Yates, C. J. Pickard, F. Mauri, Phys. Rev. B 76, 024401 (2007).]</ref>
<ref name="mason:ssn:93">[http://dx.doi.org/10.1016/0926-2040(93)90010-K J. Mason, Solid State Nucl. Magn. Reson. 2, 285 (1993).]</ref>
<ref name="gregor:jcp:99">[http://dx.doi.org/10.1063/1.479451 T. Gregor, F. Mauri, R. Car, J. Chem. Phys. 111, 1815 (1999).]</ref>
</references>
----
[[The_VASP_Manual|Contents]]


[[Category:INCAR]]
[[Category:INCAR tag]][[Category:NMR]]

Latest revision as of 11:02, 11 March 2025

LCHIMAG = .TRUE. | .FALSE.
Default: LCHIMAG = .FALSE. 

Description: Calculate the chemical shifts and magnetic susceptibility within linear response theory.


For LCHIMAG = True, the chemical shift tensors and magnetic susceptibility is computed. The implementation[1] is based on linear response theory using the gauge-invariant PAW method of Yates, Pickard, and Mauri [2][3], that is an extension to the standard PAW method to account for the effects of a vector gauge field . The NMR response currents are computed and the induced B field is calculated based on the Biot-Savart law.

See also WRT_NMRCUR to write the currents and NUCIND to compute the nuclear-independent chemical shielding.

Warning: This method only works for non-metallic systems, i.e., that have a finite bandgap.

Definitions

The chemical shielding tensor is defined as:

Here denotes the atomic nuclear site, and denote Cartesian indices, an applied DC external magnetic field and the induced magnetic field at the nucleus.

NMR experiments yield information on the shielding relative to a reference compound:

Here, is the isotropic shielding of the nucleus in the reference compound. is the chemical shift tensor. In order to compare numerical results with the experimental data, one usually considers a series of compounds and references that to the experimental series.

Mind: If VASP reports the chemical shift (LNMRSHIELD = False) it is simply the negative shielding, . The reference must still be added in the postprocessing to analyze the data.

VASP calculates chemical "shifts" for non-metallic crystalline systems using the linear response method of Yates, Pickard, and Mauri [2][3].

The isotropic chemical "shift" , span , and skew are also reported, according to the following Herzfeld-Berger convention [4]:

The orbital magnetic susceptibility is calculated according to a finite-differences approach:

where .

Qij is approximated in two ways. The so-called pGv-approximation is used by default [3], where p is momentum, v is velocity, and G is a Green's function. An alternative approach, the vGv-approximation is also used to calculate an alternative susceptibility since VASP 6.4.0 [5]. Q is defined for the pGv-approximation as:

and for the vGv-approximation as:

.

Output

The isotropic chemical shieldings are printed towards the end of the OUTCAR file, after the self-consistent calculation has finished. The chemical shift tensors both before and after space group symmetrization. These are the absolute tensors for the infinite lattice, excluding core contributions. They can be searched for under the UNSYMMETRIZED TENSORS and SYMMETRIZED TENSORS after Absolute Chemical Shift tensors. Additionally, the magnetic susceptibility is printed shortly after and found under ORBITAL MAGNETIC SUSCEPTIBILITY.

Magnetic susceptibility

The magnetic susceptibility is found at the start of the ORBITAL MAGNETIC SUSCEPTIBILITY, excluding core contribution. The magnetic susceptibility is split into that obtained by the pGv-approximation and obtained by the vGv-approximation:

-------------------------------------------------------------
  ORBITAL MAGNETIC SUSCEPTIBILITY, excluding core contribution
 -------------------------------------------------------------
  Approximate magnetic susceptibility, pGv (10^-6 cm^3/mole)
     1        -70.928534         -0.000000          0.000000
     2         -0.000000        -70.928534          0.000000
     3          0.000000          0.000000        -70.928534
 -------------------------------------------------------------
  Approximate magnetic susceptibility, vGv (10^-6 cm^3/mole)
     1        -63.412095         -0.000000          0.000000
     2         -0.000000        -63.412095          0.000000
     3          0.000000          0.000000        -63.412095

         principal value                      axis
       (10^-6 cm^3/mole)           x,          y,          z
      --------------------------------------------------------
              -63.412095      0.1652     -0.9863      0.0000
              -63.412095     -0.9863     -0.1652      0.0000
              -63.412095      0.0000      0.0000      1.0000
 -------------------------------------------------------------

Chemical shielding

To obtain the full absolute tensors requires adding both the contribution (cf. G=0 CONTRIBUTION TO CHEMICAL SHIFT) and the contributions due to the core electrons. The latter consists of contributions for each chemical species separately (depending on POTCAR) and a global susceptibility contribution.

The reference shift experienced by the core is given first:

  Core NMR properties

  typ  El   Core shift (ppm)
 ----------------------------
    1  C     -200.5098801
 ----------------------------

  Core contribution to magnetic susceptibility:     -0.31  10^-6 cm^3/mole
 --------------------------------------------------------------------------
Important: The isotropic chemical shift (ISO_SHIFT) is the negative of the isotropic shielding. To make it a real shift one should add the reference shielding.

Next, the tensor is processed and its chemical shielding anisotropy (CSA) characteristics are printed in the OUTCAR. The tensor is symmetrized ( is enforced) and diagonalized. From the three diagonal values the isotropic chemical "shift" , span , and skew are calculated and printed see Ref. [4] for unambiguous definitions. Note that is ill-defined if . Units are ppm, except for the skew. A typical output is given below:

                                                                                                          
   ---------------------------------------------------------------------------------
    CSA tensor (J. Mason, Solid State Nucl. Magn. Reson. 2, 285 (1993))
   ---------------------------------------------------------------------------------
               EXCLUDING G=0 CONTRIBUTION             INCLUDING G=0 CONTRIBUTION
           -----------------------------------   -----------------------------------
    ATOM    ISO_SHIFT        SPAN        SKEW     ISO_SHIFT        SPAN        SKEW
   ---------------------------------------------------------------------------------
    (absolute, valence only)
       1    4598.8125      0.0000      0.0000     4589.9696      0.0000      0.0000
       2     291.5486      0.0000      0.0000      282.7058      0.0000      0.0000
       3     736.5979    344.8803      1.0000      727.7550    344.8803      1.0000
       4     736.5979    344.8803      1.0000      727.7550    344.8803      1.0000
       5     736.5979    344.8803      1.0000      727.7550    344.8803      1.0000
   ---------------------------------------------------------------------------------
    (absolute, valence and core)
       1   -6536.1417      0.0000      0.0000    -6547.9848      0.0000      0.0000
       2   -5706.3864      0.0000      0.0000    -5718.2296      0.0000      0.0000
       3   -2369.4015    344.8803      1.0000    -2381.2446    344.8803      1.0000
       4   -2369.4015    344.8803      1.0000    -2381.2446    344.8803      1.0000
       5   -2369.4015    344.8803      1.0000    -2381.2446    344.8803      1.0000
   ---------------------------------------------------------------------------------
    IF SPAN.EQ.0, THEN SKEW IS ILL-DEFINED
   ---------------------------------------------------------------------------------

The isotropic chemical shielding for each atom, excluding and including G=0 contributions, as well as the span and skew (descriptions of asymmetry), follow. Finally, core contributions are taken into account for the ISO_SHIFT, SPAN, and SKEW.

Important:
  • The columns excluding the contribution are useful for supercell calculations on molecules.
  • The columns including the contribution are for crystals.
  • The upper block gives the shielding due to only the electrons included in the SCF calculation.
  • The lower block has the contributions due to the frozen PAW cores added. These core contributions are rigid [6]. They depend on POTCAR and are isotropic, i.e. affect neither SPAN nor SKEW.

Related tags and articles

DQ, ICHIBARE, LNMR_SYM_RED, NLSPLINE, LLRAUG, LBONE, LVGVCALC, LVGVAPPL

Examples that use this tag

References