IVDW: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
 
(55 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{TAGDEF|IVDW|0 {{!}} 1 {{!}} 10 {{!}} 11 {{!}} 12 {{!}} 2 {{!}} 20 {{!}} 21 {{!}} 202 {{!}} 4|0}}
{{TAGDEF|IVDW|1 {{!}} 11 {{!}} 12 {{!}} 2 {{!}} 21 {{!}} ...|0 (no correction)}}


Description: This tag controls whether vdW corrections are calculated or not. If they are calculated {{TAG|IVDW}} controls how they are calculated.  
Description: {{TAG|IVDW}} specifies a vdW dispersion term of the atom-pairwise or many-body type.
----
----
Popular local and semilocal density functionals are unable to describe correctly
van der Waals interactions resulting from dynamical correlations between fluctuating charge
distributions. A pragmatic method to work around this problem is to add a correction to the conventional
Kohn-Sham DFT energy <math>E_{\mathrm{KS-DFT}}</math>:


<math> E_{\mathrm{DFT-disp}} = E_{\mathrm{KS-DFT}} + E_{\mathrm{disp}}.</math>
== Available vdW atom-pairwise and many-body methods ==


The  correction term <math>E_{\mathrm{disp}}</math> is computed using some of the available approximate methods.
With all methods listed below, a dispersion correction is added to the total energy, but also to the atomic forces and stress tensor, such that lattice relaxations, molecular dynamics, and vibrational analysis (via finite differences) can be performed. Note, however, that these correction schemes are currently not available for phonon calculations based on [[Phonons:_Theory#Density_functional_perturbation_theory|density functional perturbation theory]].
The choice of vdW method is controlled via the following tags:


*{{TAG|IVDW}}=0 no correction
{| class="wikitable"
*{{TAG|IVDW}}=1|10 {{TAG|DFT-D2}} method of Grimme (available as of VASP.5.2.11)
|-
*{{TAG|IVDW}}=11 zero damping {{TAG|DFT-D3}} method of Grimme (available as of VASP.5.3.4)
! style="text-align:center;" style=width:4em | IVDW= !! style="text-align:center;" style=width:12em | Type !! class="unsortable" | Description
*{{TAG|IVDW}}=12 {{TAG|DFT-D3}} method with Becke-Jonson damping (available as of VASP.5.3.4)
*{{TAG|IVDW}}=2|20 {{TAG|Tkatchenko-Scheffler method}} (available as of VASP.5.3.3)
*{{TAG|IVDW}}=21 {{TAG|Tkatchenko-Scheffler method with iterative Hirshfeld partitioning}} (available as of VASP.5.3.5)
*{{TAG|IVDW}}=202 {{TAG|Many-body dispersion energy}} method (MBD@rSC) (available as of VASP.5.4.1)
*{{TAG|IVDW}}=4 {{TAG|dDsC dispersion correction}} method (available as of VASP.5.4.1)


All methods listed above add vdW correction to  potential energy, interatomic forces, as well as stress tensor and
|-
hence simulations such as atomic and lattice relaxations, molecular dynamics, and vibrational
| style="text-align:center;"| 1 or 10 || style="text-align:center;" | pairwise || {{TAG|DFT-D2}} method of Grimme.{{cite|grimme:jcc:06}} Available as of VASP.5.2.11.
analysis (via finite differences) can be performed. Note, however, that these correction schemes
are currently not available for calculations based on density functional perturbation theory.


'''N.B.''': The parameter {{TAG|LVDW}} used in previous versions of VASP
|-
(5.2.11 and later) to activate {{TAG|DFT-D2}} method is now obsolete. If {{TAG|LVDW}}=''.TRUE.'' is defined,
| style="text-align:center;"| 11 || style="text-align:center;" | pairwise || {{TAG|DFT-D3}} method of Grimme with zero-damping function.{{cite|grimme:jcp:10}} Available as of VASP.5.3.4.
{{TAG|IVDW}} is automatically set to 1 (unless {{TAG|IVDW}} is specified in {{FILE|INCAR}}).


== Related Tags and Sections ==
|-
{{TAG|LVDW}},
| style="text-align:center;"| 12 || style="text-align:center;" | pairwise || {{TAG|DFT-D3}} method with Becke-Johnson damping function.{{cite|grimme:jcc:11}} Available as of VASP.5.3.4.
{{TAG|DFT-D2}},
 
{{TAG|DFT-D3}},
|-
| style="text-align:center;"| 13 || style="text-align:center;" | pairwise || [[DFT-D4]] method.{{cite|caldeweyher:jcp:2019}} Available as of VASP.6.2 as [[Makefile.include#DFT-D4_.28optional.29|external package]].
 
|-
| style="text-align:center;"| 3 || style="text-align:center;" | pairwise || {{TAG|DFT-ulg}}{{cite|kim:jpcl:2012}} method. Available as of VASP.5.3.5.
 
|-
| style="text-align:center;"| 4 || style="text-align:center;" | pairwise || {{TAG|dDsC dispersion correction}}{{cite|steinmann:jcp:11}}{{cite|steinmann:jctc:11}} method. Available as of VASP.5.4.1.
 
|-
| style="text-align:center;"| 2 or 20 || style="text-align:center;" | pairwise || {{TAG|Tkatchenko-Scheffler method}}.{{cite|tkatchenko:prl:09}} Available as of VASP.5.3.3.
 
|-
| style="text-align:center;"| 21 || style="text-align:center;" | pairwise || {{TAG|Tkatchenko-Scheffler method with iterative Hirshfeld partitioning}}.{{cite|bucko:jctc:13}}{{cite|bucko:jcp:14}} Available as of VASP.5.3.5.
 
|-
| style="text-align:center;"| 202 || style="text-align:center;" | many-body || {{TAG|Many-body dispersion energy}} method (MBD@rsSCS).{{cite|tkatchenko:prl:12}}{{cite|ambrosetti:jcp:14}} Available as of VASP.5.4.1.
 
|-
| style="text-align:center;"| 263 || style="text-align:center;" | many-body || {{TAG|Many-body dispersion energy with fractionally ionic model for polarizability}} method (MBD@rSC/FI).{{cite|gould:jctc:2016_a}}{{cite|gould:jctc:2016_b}} Available as of VASP.6.1.0.
 
|-
| style="text-align:center;"| 14 || style="text-align:center;" | pairwise and many-body || One of the methods available in the [[LIBMBD_METHOD|Library libMBD of many-body dispersion methods]].{{cite|libmbd_1}}{{cite|libmbd_2}}{{cite|hermann:jcp:2023}} Available as of VASP.6.4.3 as [[Makefile.include#libMBD_.28optional.29|external package]].
 
|}
{{NB|mind|
*The [[LIBMBD_METHOD|libMBD]] implementations ({{TAG|IVDW}}{{=}}14) of the Tkatchenko-Scheffler methods and their MBD extensions are much faster (analytical calculation of the forces) than the VASP implementations (numerical calculation of the forces). Therefore, it is strongly recommended to use the [[LIBMBD_METHOD|libMBD]] implementation if available.
*The parameter {{TAG|LVDW}} used in previous versions of VASP (5.2.11 and later) to activate the {{TAG|DFT-D2}} method is now obsolete. If {{TAG|LVDW}}{{=}}''.TRUE.'' is defined, {{TAG|IVDW}} is automatically set to 1 (unless {{TAG|IVDW}} is specified in {{FILE|INCAR}}).}}
 
== Related tags and articles ==
{{TAG|DFT-D2}}, {{TAG|DFT-D3}}, [[DFT-D4]],
{{TAG|Tkatchenko-Scheffler method}},
{{TAG|Tkatchenko-Scheffler method}},
{{TAG|Self-consistent screening in Tkatchenko-Scheffler method}},
{{TAG|Tkatchenko-Scheffler method with iterative Hirshfeld partitioning}},
{{TAG|Tkatchenko-Scheffler method with iterative Hirshfeld partitioning}},
{{TAG|Many-body dispersion energy}},
{{TAG|Many-body dispersion energy}},
{{TAG|dDsC dispersion correction}}
{{TAG|Many-body dispersion energy with fractionally ionic model for polarizability}},
{{TAG|DFT-ulg}},
{{TAG|dDsC dispersion correction}},
{{TAG|LIBMBD_METHOD}}
 
See also the alternative vdW-DF functionals: {{TAG|LUSE_VDW}}, {{TAG|Nonlocal vdW-DF functionals}}.


{{sc|IVDW|Examples|Examples that use this tag}}
{{sc|IVDW|Examples|Examples that use this tag}}
----
----
[[The_VASP_Manual|Contents]]


[[Category:INCAR]][[Category:XC Functionals]][[Category: van der Waals]][[Category:Howto]]
[[Category:INCAR tag]][[Category:Exchange-correlation functionals]][[Category: van der Waals functionals]]

Latest revision as of 14:31, 28 February 2025

IVDW = 1 | 11 | 12 | 2 | 21 | ...
Default: IVDW = 0 (no correction) 

Description: IVDW specifies a vdW dispersion term of the atom-pairwise or many-body type.


Available vdW atom-pairwise and many-body methods

With all methods listed below, a dispersion correction is added to the total energy, but also to the atomic forces and stress tensor, such that lattice relaxations, molecular dynamics, and vibrational analysis (via finite differences) can be performed. Note, however, that these correction schemes are currently not available for phonon calculations based on density functional perturbation theory.

IVDW= Type Description
1 or 10 pairwise DFT-D2 method of Grimme.[1] Available as of VASP.5.2.11.
11 pairwise DFT-D3 method of Grimme with zero-damping function.[2] Available as of VASP.5.3.4.
12 pairwise DFT-D3 method with Becke-Johnson damping function.[3] Available as of VASP.5.3.4.
13 pairwise DFT-D4 method.[4] Available as of VASP.6.2 as external package.
3 pairwise DFT-ulg[5] method. Available as of VASP.5.3.5.
4 pairwise dDsC dispersion correction[6][7] method. Available as of VASP.5.4.1.
2 or 20 pairwise Tkatchenko-Scheffler method.[8] Available as of VASP.5.3.3.
21 pairwise Tkatchenko-Scheffler method with iterative Hirshfeld partitioning.[9][10] Available as of VASP.5.3.5.
202 many-body Many-body dispersion energy method (MBD@rsSCS).[11][12] Available as of VASP.5.4.1.
263 many-body Many-body dispersion energy with fractionally ionic model for polarizability method (MBD@rSC/FI).[13][14] Available as of VASP.6.1.0.
14 pairwise and many-body One of the methods available in the Library libMBD of many-body dispersion methods.[15][16][17] Available as of VASP.6.4.3 as external package.
Mind:
  • The libMBD implementations (IVDW=14) of the Tkatchenko-Scheffler methods and their MBD extensions are much faster (analytical calculation of the forces) than the VASP implementations (numerical calculation of the forces). Therefore, it is strongly recommended to use the libMBD implementation if available.
  • The parameter LVDW used in previous versions of VASP (5.2.11 and later) to activate the DFT-D2 method is now obsolete. If LVDW=.TRUE. is defined, IVDW is automatically set to 1 (unless IVDW is specified in INCAR).

Related tags and articles

DFT-D2, DFT-D3, DFT-D4, Tkatchenko-Scheffler method, Self-consistent screening in Tkatchenko-Scheffler method, Tkatchenko-Scheffler method with iterative Hirshfeld partitioning, Many-body dispersion energy, Many-body dispersion energy with fractionally ionic model for polarizability, DFT-ulg, dDsC dispersion correction, LIBMBD_METHOD

See also the alternative vdW-DF functionals: LUSE_VDW, Nonlocal vdW-DF functionals.

Examples that use this tag


  1. S. Grimme, J. Comput. Chem. 27, 1787 (2006).
  2. S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, J. Chem. Phys. 132, 154104 (2010).
  3. S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).
  4. E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, and S. Grimme, J. Chem. Phys. 150, 154122 (2019).
  5. H. Kim, J.-M. Choi, and W. A. Goddard, III, J. Phys. Chem. Lett. 3, 360 (2012).
  6. S. N. Steinmann and C. Corminboeuf, J. Chem. Phys. 134, 044117 (2011).
  7. S. N. Steinmann and C. Corminboeuf, J. Chem. Theory Comput. 7, 3567 (2011).
  8. A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
  9. T. Bučko, S. Lebègue, J. Hafner, and J. G. Ángyán, J. Chem. Theory Comput. 9, 4293 (2013)
  10. T. Bučko, S. Lebègue, J. G. Ángyán, and J. Hafner, J. Chem. Phys. 141, 034114 (2014).
  11. A. Tkatchenko, R. A. DiStasio, Jr., R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
  12. A. Ambrosetti, A. M. Reilly, and R. A. DiStasio Jr., J. Chem. Phys. 140, 018A508 (2014).
  13. T. Gould and T. Bučko, C6 Coefficients and Dipole Polarizabilities for All Atoms and Many Ions in Rows 1–6 of the Periodic Table, J. Chem. Theory Comput. 12, 3603 (2016).
  14. T. Gould, S. Lebègue, J. G. Ángyán, and T. Bučko, A Fractionally Ionic Approach to Polarizability and van der Waals Many-Body Dispersion Calculations, J. Chem. Theory Comput. 12, 5920 (2016).
  15. https://libmbd.github.io/
  16. https://github.com/libmbd/libmbd
  17. J. Hermann, M. Stöhr, S. Góger, S. Chaudhuri, B. Aradi, R. J. Maurer, and A. Tkatchenko, libMBD: A general-purpose package for scalable quantum many-body dispersion calculations, J. Chem. Phys. 159, 174802 (2023).